
1SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

SOFTWARE SUPPLY
CHAIN SECURITY BUYERS
GUIDE FOR BUILD TOOLS

2SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

Executive Summary

The software supply chain has been increasingly under attack since the Solarwinds hack of December 2020,
which proved the threat to be very real for everyone from the US government to the Fortune 500, and all the
SMBs in between. Given the size of the opportunity, it’s no wonder that the market has seen an explosion in
vendors claiming to offer supply chain security solutions, including those that encompass the software build
process.

Security-conscious organizations know that the only way to ensure the security and integrity of software
dependencies is to build them from scratch by:

•	 Importing all open source dependency source code into their code repository

•	 Creating a declarative CI/CD pipeline consisting of isolated, ephemeral environments

•	 Generating an SBOM and attestation to prove the security & integrity for downstream consumers

However, most of the software industry builds very few third-party dependencies from source code, preferring
to import prebuilt software due to the cost and complexity of vendoring dependencies in any organization with
multiple development teams and diverse technology stacks.

A number of traditional and emerging tools discussed in this guide can help reduce the cost and complexity of
vendoring your dependencies.

3SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

Introduction
Organizations are increasingly concerned with the security of their software supply chain, but often have
trouble navigating the ever-expanding labyrinth of open source and proprietary software solutions that claim
to help. While solutions exist across the entire software supply chain, this section of ActiveState’s Buyers Guide
to Securing the Software Supply Chain focuses specifically on the tools used in the software build process.

The software supply chain extends from:

Build Process – the process of compiling, building and/or packaging code, usually via an automated
system that also executes tests on built artifacts.

Imported Code - any open source packages, code snippets, tools, or other third-party software brought into
the organization in order to streamline the software development process.

Use/Deploy – the process of working with, testing and running built artifacts in dev, test and production.

Solarwinds has become the poster child for supply chain security within the build process, having delivered
signed software to thousands of customers who assumed it was secure despite the fact that their Orion
product had been compromised after the signing process within their CI/CD pipeline.

Code signing has been used for decades to ensure that software has not been altered or corrupted between
the time it was built and the time it gets deployed. But the real value of signed code for most customers is the
establishment of trust, which is why the SolarWinds hack was so pernicious:
it effectively undermined trust in signed software.

Despite this fact, very few enterprises are taking proactive efforts to identify, assess and mitigate software
supply chain risks. In fact, according to Sonatype1, only 7% of surveyed organizations are prioritizing supply
chain security.

This result is echoed by results from the “Application Security Posture Management (ASPM) 2024” report that
surveyed 500 US CISOs:

77% of CISOs perceive software
supply chain security as a substantial

blind spot for AppSec“

“

1. Sonatype 9th Annual State of the Software Supply Chain

ASPM 2024 Report

4SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

Securing The Build Process

Software build systems take the form of a Continuous Integration / Continuous Delivery (CI/CD) system that
can automate the build, test and delivery of software artifacts. CI/CD is an agile software development best
practice designed to enable more frequent and reliable code updates.

While CI/CD has been widely adopted by software vendors, there are a number of security issues the industry
continues to wrestle with, including:

Supply chain Levels for Software Artifacts (SLSA) is an emerging security framework that can help ensure
that all the code you import into your organization and/or build within your organization is done in a secure
manner. As such, SLSA is key to helping resolve the transparency and contamination issues, and can put you
on the road to achieving reproducibility.

Transparency – understanding the original source for all artifacts entering the CI/CD pipeline can improve
both security and integrity of built artifacts.

Contamination – longer lived processes and/or containers can become polluted, especially if they’re not
sealed off from the internet.

Reproducibility – consistent output is key to ensuring artifacts are built securely from the same set of
inputs – every time.

SLSA SECURES THE BUILD PROCESS

SLSA defines a number of “Build Levels” that can provide you with key stages on your road to securing your
build service:

Build Level 1:
Provenance – any code, library or open source package imported into the organization must have a type
of software attestation known as a “provenance attestation” that shows where the code was sourced from
and how the package was built:

•	 Who built the package (person or system)

•	 What process/command was used

•	 What the input artifacts (e.g., dependencies) were

A downstream system should be implemented to automatically verify packages were built as expected.
For example, TestifySec Witness provides a framework for automating, normalizing and verifying software
attestations.

https://github.com/testifysec/witness/

5SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

Build Level 2:
Build Service + Signing – introduces a build service that includes signing of the provenance attestation.
An isolated signing service ensures against bad actors accessing secrets used to sign the provenance,
as well as providing downstream systems/users with signed artifacts to indicate they were not
tampered with after being built.

A downstream service should be implemented to verify the authenticity of the signature. For example, SigStore
offers software signing using Cosign to generate the key pairs needed to sign and verify artifacts, along with a
transparent ledger so anyone can find and verify signatures.

Build Level 3:
 Hardened Builds – specifies a number of controls that harden the organization’s build service,
including:

•	 Build Steps – each build step should have a single responsibility. When fulfilled, the output should be
checked and, if required, passed to the next step.

•	 Infrastructure – all build steps should have dedicated resources that are discarded at step completion,
preventing contamination of subsequent steps.

•	 Environments – care must be taken to ensure the runtime environment is minimized, and the container
only includes components that are absolutely required.

•	 Provenance – each build step must be dependency complete, and each dependency traceable to the
originating source.

•	 Service/Network – run on a segmented network with no internet or manual access in order to limit local
exploits and remote tampering/intrusion. This means employing:

	» Pre-Scripted Parameterless Builds – build scripts cannot be accessed and modified within the
build service, preventing exploits.

	» Ephemeral, Isolated Build Steps – every step in a build process must execute in its own container,
which is discarded at the completion of each step.

	» Hermetically Sealed Environments – containers have no internet access, preventing (for example)
dynamic packages from including remote resources.

Bonus:

•	 Reproducibility – if the same “bits” input don’t always result in the same “bits” output, there’s no
guarantee the artifacts you’re working with haven’t changed from build to build.

DECLARATIVE PIPELINES

In general, CI/CD systems support either a declarative programming model (supports SLSA Build Level 3),
or an imperative programming model based on scripts (supports SLSA Build Level 2). Hardening your build
service will require a CI/CD solution that allows you to implement a declarative pipeline that breaks down
each stage of the pipeline into multiple discrete steps.

https://github.com/sigstore

6SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

Drone offers an Apache 2.0 licensed open source CI platform in which each pipeline step is executed inside an isolated
Docker container to ensure security.

Key Capabilities:

Integrate with most popular code repos like GitHub, Bitbucket and GitLab.

Supports parallel builds and tests

Integrates with LambdaTest for cross-browser testing

Offers plugins for cloud integration, reporting, testing, notifications, etc

Advantage: By default, isolated Docker containers ensure build steps do not conflict.

OPEN SOURCE DECLARATIVE PIPELINE TOOLS

The following open source CI/CD solutions can support declarative pipelines:

Jenkins is perhaps the world’s most popular automation server, and offers hundreds of plugins (including a declarative
pipeline plugin) to support building, deploying and automating any project on Windows, Linux, and macOS.

Key Capabilities:

Highly extensible with a large plugin ecosystem (1500+ plugins)

Integrates with most popular cloud platforms

Supports performing work in parallel

Advantage: Best-in-class community support.

Spinnaker (originally from Netflix) is a multi-cloud continuous delivery platform that provides a flexible pipeline management
system with integrations to most major cloud providers.

Key Capabilities:

Create pipelines that launch and stop server groups, system tests and track rollouts

Create immutable images to accelerate rollouts, simplify rollbacks and eliminate configuration drift problems

Integrate with monitoring services like Datadog, Prometheus, Stackdriver, or SignalFx for canary analysis

Advantage: Offers a CLI administration tool (Halyard) you can use to install, configure, and upgrade your instances.

https://www.drone.io/
https://www.jenkins.io/
https://www.jenkins.io/doc/pipeline/steps/pipeline-model-definition/
https://www.jenkins.io/doc/pipeline/steps/pipeline-model-definition/
https://github.com/spinnaker

7SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

COMMERCIAL DECLARATIVE PIPELINE TOOLS

In addition to the popular open source tools listed above, there are a number of commercially available CI/CD
solutions that also support declarative pipelines, including:

There are literally dozens of players in the CI/CD Security market, which is far too many to list here. For an
overview of how many of the most popular CI/CD tools compare, CloudZero offers a comprehensive overview.

TeamCity – created by JetBrains, TeamCity can be installed on Windows and Linux servers. It provides integration with
Docker, Visual Studio Team Services, Maven, NuGet, Azure DevOps, Jira Software Cloud, etc, and also supports launching
build agents in Kubernetes clusters.
Key Capabilities:
Highly extensible/ customizable
Runs parallel builds
Pipelines are defined using Kotlin-based Domain Specific Language (DSL)
Advantage: Provides for viewing test progress (and history) reports on-the-fly.

CircleCI is available as both a cloud-based and on-premise (self-hosted) solution that supports Windows, Linux, and
macOS. It uses a proprietary YAML syntax for its pipelines. Its cloud native CI/CD pipelines are easy to set up as workflows
that can be integrated with code repos like GitHub, Bitbucket, etc.
Key Capabilities:
Builds can be split and balanced across multiple containers
Supports parallel testing
Advantage: CircleCI Orbs are reusable snippets of code that help automate repetitive tasks and streamline integration
with third-party tools.

Travis CI is an early entrant in the CI/CD Security market that initially supported only open-source projects, but subsequently
added support for closed-source projects, as well. Travis provides both a cloud-hosted (SaaS) and self-hosted version of
their offering that supports more than 30 programming languages on all major OSs, and integrates with common code
repos like GitHub and Bitbucket.
Key Capabilities:
Build matrix provides support for parallel builds
Offers integration with cloud based testing platform LambdaTest for testing across different browsers, platforms, and
devices (emulators)
Advantage: Uses a proprietary YAML syntax that integrates with GitHub Enterprise tools.

https://www.cloudzero.com/blog/cicd-tools/
https://www.jetbrains.com/teamcity/
https://circleci.com/
https://www.travis-ci.com/

8SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

Conclusions

ActiveState’s State of CI/CD Survey found that while most software vendors are at least in the process of
implementing a CI/CD system, very few would consider themselves experts.

Tellingly, the practice of Continuous Security is the least mature. One of the key reasons for this is due
to the fact that the only way to ensure the security and integrity of any built software requires that all its
components be built from source code. When you consider that >80% of all components in any modern
software application are open source libraries, building them all from source (along with their complete set of
dependencies and any linked C libraries) becomes an extremely complex task. Especially if your organization
has multiple development teams and a diverse technology stack.

But not only do you need to vendor all your dependencies in order to build everything from source code, you
also need to set up and maintain a secure, hardened build system. The time and resources required for such
a task are beyond the means of all but the largest of software vendors.

The ActiveState Platform is a SLSA Build Level 3-compliant, hardened build service that builds all of your open
source dependencies (including linked C and Fortran libraries) from source code, and then packages them
into a secure runtime environment. ActiveState goes a step further by ensuring all builds are reproducible, as
well as generating an SBOM and signed software attestations (both Provenance and Verification Summary
Attestations).

By integrating your existing software development process with the ActiveState Platform you can gain SLSA
compliance in a matter of days (not months), freeing up your developers to work on what matters most:
creating features and functionality.

This is why we built the ActiveState Platform: to vendor your project’s dependencies on your behalf, and
automatically build them securely from source code for you.

https://www.activestate.com/resources/data-sheets/ci-cd-survey-results/
http://www.activestate.com

9SOFTWARE SUPPLY CHAIN SECURITY BUYERS GUIDE FOR BUILD TOOLS

ActiveState enables DevOps, InfoSec, and Development teams to improve their security posture while
simultaneously increasing productivity and innovation to deliver secure applications faster.

With a single platform that tames open source complexity, teams get a continuously secure software supply
chain, unparalleled observability, robust vulnerability management, continuous upgrades, and governance

support that enhance collaboration across the organization.

All from the trusted partner that pioneered and continues to lead enterprise adoption and use of open source
software.

About ActiveState

©2024 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™, and The Open Source Languages Company™ are all trademarks of ActiveState.

www.activestate.com • Toll-free in NA: 1-866.631.4581 • solutions@activestate.com

Start An Enterprise Trial

https://www.activestate.com/solutions/contact-sales/

