
1

Stage 4
Anti Entropy

The Journey To
Software Supply
Chain Security

Dana Crane
with Scott Robertson

11

Stage 0
 Complete Anarchy

Stage 1
 Observable Chaos

Stage 2
 Automated Security

Stage 3
	 Verifiable	Safety

Stage 4
 Anti Entropy

Stages To A
Secure Software
Supply Chain5

2

Stage 0
Complete Anarchy

Introduction
HIstorically, hackers have searched for needle-sized exploits
in a worldwide haystack of corporations. All that changed
in 2020 with the SolarWinds hack, which showed that one
compromised development environment at a key software
vendor can result in trojanized patches and software updates
being propagated downstream to tens of thousands of
customers.

In other words, bad actors have discovered economies of
scale: a single cyberattack against a popular software vendor
can grant hackers access to corporations and governments
around the globe in today’s internet-connected world.

Copycat attacks quickly followed:

SolarWinds became the poster child for software supply chain
attacks when hackers inserted a malicious DLL into their software
build process prior to the signing step. Signing is widely considered
a best practice to ensure that code has not been altered or
corrupted since the application was signed.

But the real value of signing to most customers is the establishment
of trust. This is why the SolarWinds hack was especially pernicious:
it effectively undermined trust in signed software.

Source: ENISA Threat Landscape for Supply Chain Attacks

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

3

Stage 0
Complete Anarchy

https://www.sonatype.com/state-of-the-software-supply-chain/introduction

State of the Software Supply Chain1

 There has been an astonishing 742%
average	annual	increase	in	Software	
Supply Chain attacks over the past 3

years.“ “

4

Stage 0
Complete Anarchy

• Import – the process of importing third-party tools, libraries,
code snippets, packages and other software resources in order to
streamline development efforts

• Build – the process of compiling, building and/or packaging
code, usually via an automated system that also executes tests
on built artifacts/applications

• Ship/Use – the process of shipping software to customers, and
working with/deploying built artifacts in development, test and
production environments.

Kaseya in 2021 confirmed the fact that software vendors are now
the front line of defense for their customers when a security flaw
in their server-side software was exploited by REvil. A malicious
script was then sent to all client customers, delivering the REvil
ransomware and encrypting their systems.

Traditionally, the software industry has focused primarily
on addressing security vulnerabilities in their software’s
codebase. Unfortunately, the software supply chain problem
is far broader and deeper, spanning a number of key software
development processes:

44

https://en.wikipedia.org/wiki/Kaseya_VSA_ransomware_attack

5

Stage 0
Complete Anarchy

The problem is compounded because the breadth and depth
of the software supply chain affords multiple points of entry
for malicious actors who are always looking for the weakest
link in the chain to exploit:

Security has always been seen as a blocker to getting software
to market, and with the exception of security-conscious
industries, is typically relegated to a back seat in the software
development process. In other words, the threat to revenue is
often seen as greater than any potential security threat.

As a result, the US government has taken the unprecedented
step of effectively legislating software supply chain security,
which will force US government software suppliers to comply
with a set of supply chain security requirements by June 11,
2023. Detailed in the government’s Executive Order 14028
focused on “improving the nation’s cybersecurity”, these
requirements can be met by following the recommendations
laid out in this eBook.

• Breadth – most organizations work with multiple open source
languages, and import their code from more than one public
repository. Because there are no industry-wide standards in place
today, each language and repository must be treated uniquely.

• Depth – There is a large set of best-practice application and
system security & integrity controls that can help, but only the
largest enterprises can hope to implement and maintain them all.

• Change – no supply chain is ever set in stone: open source
authors change; packages are constantly updated, become
vulnerable, and get patched. Languages go EOL, repositories
move, trusted vendors change, etc, making it difficult to keep up.

CircleCI, the popular CI/CD vendor, offers the latest proof that
the industry has learned nothing from the SolarWinds incident,
and continues to have an appetite for risk that far outweighs the
perceived threat to their software supply chain.

It also illustrates the need to secure not just the build process, but
developer desktop environments as well. This is potentially a far
more challenging task given developer ingenuity at finding creative
solutions to restrictive problems.

https://circleci.com/blog/jan-4-2023-incident-report/

6

Stage 0
Complete Anarchy

Every journey begins with a single step, but for many smaller
organizations the first step can represent such a significant
cultural change that they never commit to it. On the other hand,
established enterprises are likely to be well down the path,
having had best practices and supporting tooling in place for
many years.

With that in mind, organizations that want to secure their
supply chain can use the following journey to create a roadmap
of tools, processes and initiatives, which will also allow them
to comply with key US secure supply chain requirements:

The	Five	Stages	to	Software	Supply	Chain	
Security

7

Stage 0
Complete Anarchy

Automated Security

Tooling supports observability
Best	practices	followed
Lack	of	governance	

Empowerment

Stage 2

Complete Anarchy

Non-standard tooling
Lack	of	standard	processes
Lack	of	governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack	of	standard	processes
Lack	of	governance

Awareness

Stage 1

Verifiable Safety

Tooling supports observability
Best	practices	followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

8

Stage 0
Complete Anarchy

 https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/

32%	of	ActiveState	Supply	Chain	Security	
Survey Respondents Agree

“ “	 		Our	current	practice	of	implicitly	
trusting	the	packages	we	get	from	public	
repositories	is	no	better	or	worse	than	the	

rest	of	the	software	industry.

https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/

9

Stage 0
Complete Anarchy

Most organizations would hesitate to characterize the way
they work as “complete anarchy,” but anarchy is really a double-
edged sword, allowing organizations to exist on the basis of
voluntary cooperation despite the disorder due to a lack of
controlling systems.

Typical characteristics include:

While the above description may seem daunting, in practice,
this way of working can actually be quite empowering,
liberating everyone to be as creative as possible. But it also
means that security is an afterthought, if it’s thought of at all.

• Non-Standard Tooling - while there is agreement on shared
tooling (such as the code repository, for example), every
developer has their own set of preferred desktop tools.

• Lack of Standard Processes - code may or may not be peer
reviewed; warnings are investigated (or not) irrespective of
severity; libraries are updated (or not) depending on local need,
and so on.

• Lack of Governance - with no standards to apply, it’s pointless
to introduce a governance layer to ensure processes are followed.

Ignorance
Stage 0
Complete Anarchy

10

Stage 0
Complete Anarchy

For example, when it comes to importing third-party, open
source code:

• No scans are run against the imported code prior to use, opening
wide the door to threats like known critical vulnerabilities being
installed in dev, test and CI/CD environments.

• Binary packages are imported prebuilt from public repositories,
rather than being built from vetted source code, potentially
introducing compromised code to the codebase.

• Public repositories are implicitly trusted, despite the fact that
they offer no guarantees as to the security and integrity of the
packages they offer. This can be problematic because:
• Open source repositories contain hundreds of thousands

of packages created by tens of thousands of authors and
maintainers, all of whom must be trusted.

• Most public repositories have no gatekeepers, and only a
limited set of safeguards (such as two-factor authentication).
There’s simply nothing stopping anyone from uploading
malware since their code will not be audited, independently
reviewed, or even scanned in depth.

1010

11

Stage 0
Complete Anarchy

This reliance on prebuilt components typically means the only
artifacts being generated by a build process are versions of
the organization’s application/service. But a lack of standard
processes and security safeguards can mean:

• Builds are created in a non-reproducible way, making it very
difficult to verify issues from one build to the next.

• Build scripts can be modified at any point, providing a foothold for
bad actors to compromise them and exploit the build system.

• Build environments for each step in the process are reused,
increasing the chance they become corrupted or compromised.

• The build system is connected to the Internet, potentially allowing
dynamic packages to include remote, unexpected resources.

• Artifacts generated by the build process are unsigned, meaning
there is no way to verify whether they have been compromised
between the time they were built and the time they’re deployed

If all this sounds like your organization, you most likely work at
a startup. But it can also be characteristic of open source or ad
hoc projects – anywhere that developers gather to collaborate
without the friction of process-heavy software development.

Unfortunately,	moving	from	Stage	0	to	Stage	1	will	
likely	 be	 the	 greatest	 challenge	 you	 face	 on	 your	
software	supply	chain	journey	since	it	will	require	a	
completely	different	culture.	

After all, ignoring security is not a sign of wilful ignorance,
but rather an expedient designed to maximize code output. As
such, it may not be possible to implement Stage 1 until you’ve
released your product and established a market for it.

1212

Stage 0
 Complete Anarchy

Stage 1
 Observable Chaos

Stage 2
 Automated Security

Stage 3
	 Verifiable	Safety

Stage 4
 Anti Entropy

Stages To A Secure
Software Supply
Chain5

13

Stage 1
Observable Chaos

Solarwinds	hack	impacted:
• 80% of the Fortune 500

• Top 10 US telecoms

• Top 5 US accounting firms

• CISA, FBI, NSA & all 5 branches of the US military

$24

$22

$20

$18
Dec 14 Dec 15 Dec 16

14

Stage 1
Observable Chaos

The software supply chain has increasingly come under attack
since the start of the pandemic as bad actors target software
development environments with the goal of embedding
malicious code in a popular application that gets deployed to
tens of thousands of customers: one attack that can potentially
compromise millions.

Software vendors have long been focused on dealing with
the problem of software vulnerabilities, but the software
supply chain is actually much broader, encompassing all of
the code that vendors import, build and ship. In other words,
the software supply chain extends across the entire software
development lifecycle (SDLC), including all of the processes
and systems that interact with it.

And therein lies the problem: the need for software vendors to
secure everything, whereas bad actors need only a single weak
link to exploit. Worse, as security is increased, usability often
suffers, which typically manifests by delaying time to market.
This is one of the key reasons why initiatives like DevSecOps,
with its “shift left” mentality that imposes security controls
throughout the SDLC, has struggled to gain traction.

Introduction

1414

15

Stage 1
Observable Chaos

• SBOMs – vendors must provide a machine-readable list of
all the components that make up their software application,
including third party libraries and integrations.

• Secure Software Development – vendors must adopt secure
software development best practices, starting with detecting and
resolving security vulnerabilities.

In response to the growing threat, as well as the reluctance
of software vendors to embrace a security-first mindset, the
US government has taken the exceptional step of imposing
supply chain security requirements. Effective from June 2023,
any vendor of software deployed at (or even coming in contact
with systems at) US government agencies or departments
must comply or risk losing their contract. While the guidelines
are extensive, key requirements for software vendors include:

In much the same way that European Union (EU) General Data
Protection Regulation (GDPR) requirements were adopted
worldwide for fear of losing out on EU revenue, the US’
secure supply chain requirements are likely to become just as
widespread.

With that in mind, this chapter focuses on Stage 1 (Observable
Chaos) of the Secure Supply Chain Journey, which can help
organizations get started on the path to securing their software
supply chain and complying with US requirements:

https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

16

Stage 1
Observable Chaos

Complete Anarchy

Non-standard tooling
Lack	of	standard	processes
Lack	of	governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack	of	standard	processes
Lack	of	governance

Awareness

Stage 1

Automated Security

Tooling supports observability
Best	practices	followed
Lack	of	governance	

Empowerment

Stage 2

Verifiable Safety

Tooling supports observability
Best	practices	followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

17

Stage 1
Observable Chaos

Customer	quote	from	one	of	the	world’s	largest	ISVs

			Observability	means	transparency	for	all	
stakeholders	who	need	to	know	what’s	in	
the	software	at	a	granular	level,	and	trust	
that	what	they	are	receiving	is	secure.
““

18

Stage 1
Observable Chaos

Awareness
Stage 1
Observable Chaos

The first real step on the journey to a secure software supply chain
is determining the security status of your existing codebase, and
observing how that status evolves over time. While you may have
left behind the “complete anarchy” described in Stage 0, a lack
of processes and governance mean Stage 1 can still feel chaotic
as you get your arms around the problem.

Characteristics include:

• Standard Tooling - a set of common software tools that
provide insight into key security measures, such as vulnerabilities,
unsecure code, malicious packages, etc.

• Lack of Standard Processes - vulnerabilities are remediated
(or not) irrespective of criticality; security warnings are
investigated (or not) irrespective of severity, and so on.

• Lack of Governance - with no standards to apply, it’s pointless
to introduce a governance layer to ensure processes are followed.

19

Stage 1
Observable Chaos

Traditionally, observability involves investigation of logs,
metrics and traces in order to monitor the health, performance,
and status of your software. While those are laudable goals,
Stage 1 on the journey to a secure supply chain is focused
squarely on observing software security characteristics.

While there are any number of security tools available, purchasing,
implementing and maintaining them quickly becomes a limiting
factor, especially since this stage is generally characterized by
the culture at small businesses. Given that modern software is
primarily composed of open source software (usually >80% of
all code), the biggest bang for the buck can be gained from just
two classes of software tools:

• Software Composition Analysis (SCA) - continually scan
the open source components in your application, and provide key
information such as software licenses, deprecated dependencies,
known vulnerabilities and potential exploits.

• Software Bill Of Materials (SBOM) - used to create a
machine-readable list of all the software components in an
application, as well as any third-party integrations, and provide
detailed information about each.

1919

20

Stage 1
Observable Chaos

The lowest hanging fruit, and where most organizations
begin securing their software supply chain, is by addressing
Common Vulnerabilities and Exposures (CVEs) in their open
source software. While SCA tools will automatically detect
a vulnerability in your codebase and notify you about it,
decreasing Mean Time To Detection (MTTD), remediating
vulnerabilities typically requires a lengthy process:

• Investigate – depending on how a component has been
implemented, an application may or may not be subject to a
vulnerability. Developers need to dedicate time to determine the
impact.

• Rebuild – if a patch or upgrade is applied to a component,
there’s always the chance that the update will break the build.
Complications can also arise when upgrades result in conflicts
with other components, leading to dependency hell.

• Retest – this task often includes manual testing in addition to
automated testing.

• Redeploy – organizations often need to schedule a deployment
time, or even wait for the next deployment window if their
production system is locked down.

All of which is why Mean Time To Remediation (MTTR) can range
from 60 to 150 days. And that’s the best case scenario, since
multiple reports consistently confirm that the vast majority of
codebases are never updated unless a critical vulnerability of
note (such as Heartbleed, Log4j, etc) forces a revision.

Small businesses with limited resources may want to use
a service like Github’s Dependabot that not only notifies
you of vulnerabilities in your GIthub repository, but can also
help you automatically pull in an updated version of the
vulnerable component. ActiveState goes one step further,
automatically rebuilding your runtime environment with the
updated component, so you need only retest and redeploy your
application.

Software	Vulnerabilities

https://www.veracode.com/state-of-software-security-report
https://www.activestate.com/blog/how-to-remediate-your-open-source-vulnerabilities-quicker/

21

Stage 1
Observable Chaos

Open Source Components
While it is a truism that you can’t secure what you don’t know
about, most organizations assume they know everything that
goes into creating their product. The reality is that

SBOMs let developers track the composition of their software
over time. Like a standard manufacturing Bill Of Materials
(BOM), SBOMs provide detailed information about how to
build a product from its component parts. In manufacturing,
the BOM lets manufacturers more easily identify and trace
defective and non-compliant parts. Similarly, SBOMs let
developers more easily identify and trace vulnerable or non-
compliant components.

For example, SBOMs can help with:

repositories,	 configuration	 files	 and	 even	 build	
scripts only ever provide a single snapshot in time
of	an	ever-changing	codebase	as	new	packages	are	
evaluated, libraries are updated, and dependencies
shift.	

• Achieving regulatory compliance by identifying components that
are disallowed within a compliance framework like PCI-DSS, SOX,
HIPAA, etc.

• Providing compatibility between old software packages and OSS
updates by identifying transient dependencies that may have
shifted.

• Licensing management/compliance by checking the open source
software licenses listed in the SBOM to ensure that none are
prohibited by your corporate guidelines.

2121

22

Stage 1
Observable Chaos

For buyers, such as US government departments and
agencies, SBOMs allow them to easily identify the impact
of vulnerabilities across all the applications they deploy.
Fortunately, most SCA tools now include SBOM generation,
but many development platforms also offer plug-n-play SBOM
generation, including:

SCA, SBOM and vulnerability remediation tools are a good
starting point, but without a framework to ensure that people,
skills, and tools are being used in a consistent manner, it’s just
that: a start.

The	 next	 stage	 in	 the	 journey	 to	 software	 supply	
chain	 security	 focuses	 on	 the	 import,	 build	 and	
deployment processes you need to ensure that the
tools	are	used	effectively	and	consistently.

• Microsoft’s SPDX sbom-tool
• GitLab’s CycloneDX generator
• Anchore’s SBOM GitHub Action
• ActiveState’s SPDX SBOM

2222

https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/#cyclonedx-software-bill-of-materials
https://github.com/marketplace/actions/anchore-sbom-action
https://www.activestate.com/resources/datasheets/improve-open-source-security-with-a-bill-of-materials/

2323

Stage 0
 Complete Anarchy

Stage 1
 Observable Chaos

Stage 2
 Automated Security

Stage 3
	 Verifiable	Safety

Stage 4
 Anti Entropy

Stages To A
Secure Software
Supply Chain5

24

Stage 2
Automated Security

– US Armed Forces customer

	 We	were	surprised	to	find	that	one	of	
the biggest players in the Python market
still uses manual processes to build their
distro.	Our	security	team	wouldn’t	let	us	

use them.
““

25

Stage 2
Automated Security

Introduction
The rash of ransomware attacks, zero-day exploits, data
breaches, and so on that occurred over the course of the
pandemic has resulted in governments worldwide effectively
declaring war on the software supply chain.

The first skirmish has seen governments across the globe
draft legislation to mandate that software vendors secure
their software supply chain. The second volley has seen the
US government propose that courts be given the power to
enforce fines against software vendors unwilling to comply
with that legislation.

But even if only a single large market’s government manages
to pass their proposed legislation, all software vendors
worldwide that want to do business in that country will need
to get on board. The European Union’s (EU) General Data
Protection Regulation (GDPR) is a good example, impacting
not only European organizations but all companies that want
to conduct business with the EU market.

But this explosion in supply chain attacks is just a symptom.
The actual root causes are many and varied, including:

• Software Vulnerabilities – typically a coding flaw in a module of an
application that compromises the security of the software, thereby
offering hackers a vector of attack (i.e., log4j).

• Compromised Ecosystems – open source public repositories
can be compromised in a number of different ways, including
typosquatting, dependency confusion, author impersonation,
malware, and so on.

• Compromised Build Systems – artifact build systems created
without strict security and integrity controls can allow hackers to
inject compromised code.

• Compromised Delivery Systems – artifact delivery systems
created without strict security and integrity controls can allow
hackers to compromise updates, patches, new releases, and so on.

2525

https://www.activestate.com/blog/understanding-secure-software-supply-chain-legislations-around-the-world/
https://www.activestate.com/blog/how-to-avoid-software-supply-chain-fines/
https://www.activestate.com/blog/how-to-avoid-software-supply-chain-fines/

26

Stage 2
Automated Security

In other words, the software supply chain extends across the
entire Software Development Lifecycle (SDLC). This is why the
US government tasked the National Institute for Standards and
Technology (NIST) to create a compendium of security best
practices not only for developers, but suppliers and customers
as well.

For software developers, the most practical reference
document is “Securing the Software Supply Chain:
Recommended Practices for Developers”, which details a
best-practices approach to implementing a Secure Software
Development Framework (SSDF), including:

If you’re like most mid-sized companies (or larger) that
characterize this stage on the Secure Supply Chain Journey,
these best practices shouldn’t come as a surprise. They’ve
been championed in one form or another for years. They also
contain overlapping requirements with existing certifications
and standards such as SOC2, PCI-DSS, ISO 27001, etc. which
means you’re very likely to have a number of these best
practices already in place.

• Architecture & Design Review – developers, suppliers
and customers must work together to define software
requirements up front.

• Software Threat Modeling – security architects should
develop threat models for all critical components and systems.

• Coding Standards – standard coding best practices apply.
• Secure Library Checks – incorporate only third-party/open

source libraries that have been vetted by your organization.
• Code & Executable Testing – use Static & Dynamic

Application Security Testing (SAST and DAST) apps, as well as
Software Composition Analysis (SCA) tools to identify issues.

• Secure Build & Delivery – harden the development, build and
delivery environments.

https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

27

Stage 2
Automated Security

Complete Anarchy

Non-standard tooling
Lack	of	standard	processes
Lack	of	governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack	of	standard	processes
Lack	of	governance

Awareness

Stage 1

Automated Security

Tooling supports observability
Best	practices	followed
Lack	of	governance	

Empowerment

Stage 2

Unfortunately, despite the fact that SSDFs have been with
us for decades, software vendors both big and small (from
Solarwinds to Kaseya to most recently CircleCI) were still
blindsided by the rising tide of software supply chain attacks
over the past three years. The missing component? A secure
software supply chain framework.

With that in mind, this chapter focuses on Stage 2 (Automated
Security) of the Secure Supply Chain Journey, which can help
organizations implement and automate best practices that
can help secure their software supply chain.

Verifiable Safety

Tooling supports observability
Best	practices	followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

https://circleci.com/blog/jan-4-2023-incident-report/

28

Stage 2
Automated Security

[Software	vendors]	must	be	held	liable	
when	they	fail	to	live	up	to	the	duty	of	
care	they	owe	consumers,	businesses,	or	

critical	infrastructure	providers.

–	US	Government	Administration	proposing	new	legislation	to	
establish	liability	for	software	vendors

““

29

Stage 2
Automated Security

The second step on the journey to a secure software supply
chain involves implementing a supply chain framework.
While the SCA and SBOM tools discussed in Stage 1 provide
transparency into what’s in your software, the tools and
processes outlined here can help ensure that the third-party
code you import into your organization, as well as the code
you build and use are secure.

Characteristics include:

While we certainly don’t advocate abandoning any SSDF
standards you may have already implemented, you will need to
incorporate a software supply chain security framework if you
hope to avoid the growing tsunami of supply chain attacks, as
well as ensure you can comply with US government supplier
requirements.

The Supply chain Levels for Software Artifacts (SLSA) security
framework, long used by Google, has recently been brought
to market by the Open Source Software Foundation (OSSF)
in conjunction with a consortium of industry collaborators.
Implementing its controls and best practices can help ensure
that the code you import and/or build in your organization is
done in a secure manner.

• Standard Tooling - implement verifiable controls that identify
the provenance (i.e., the source) of the third-party packages you
import and build.

• Standard Processes - implement secure software supply chain
best practices when importing third-party code, as well as when
building software artifacts.

• Lack of Governance - a governance layer to ensure best
practices are followed is not required at this stage.

Empowerment
Stage 2
Automated Security

30

Stage 2
Automated Security

Build Level 1: Provenance – any code, library or open source
package imported into the organization must have a type of
software attestation known as a “provenance attestation” that
shows where the code was sourced from and how the package
was built:

A downstream system equipped with a tool like SLSA Verifier can
then be used to verify the provenance of the third-party software.

The	 result	 is	 a	 chain	 of	 custody	 from	 the	 importing	 of	
code	to	the	building	of	artifacts	to	use	by	development	
teams	 to	 incorporation	 into	 the	 final	 product,	 where	
every	group	along	 the	way	can	verify	 the	 security	and	
integrity	of	the	components	they	use.	

For example, ActiveState is currently working with open source
ecosystems like Python to enable authors and maintainers to
automatically generate provenance attestations and upload
them to the Python Package Index (PyPI).

Until that process becomes commonplace across all open
source ecosystems, we recommend dependency vendoring
(i.e., downloading, vetting and building the source code) of all
the third-party packages you work with so you can generate your
own provenance attestations. Alternatively, you can use the
ActiveState Platform to automatically build your open source
packages and generate provenance attestations for them.

Other attestation solutions include:

• Who built the package (person or system)
• What process/command was used
• What the input artifacts (e.g., dependencies) were

• Microsoft Azure Attestations – for Azure DevOps Builds

• GitHub Actions Attestations – for GitHub Actions builds

The	 SLSA	 1.0	 specification	 defines	 three	 Build	 Levels	
beyond	 Build	 Level	 0,	 which	merely	 indicates	 no	 SLSA	
implementation	is	present:

3030

• TestifySec Witness – for any build system

https://github.com/slsa-framework/slsa-verifier
https://www.activestate.com/resources/white-papers/scalable-dependency-vendoring/
https://www.activestate.com/solutions/attestations/
https://azure.microsoft.com/en-us/products/azure-attestation/#overview
https://github.com/in-toto/attestation/actions
https://www.testifysec.com/

31

Stage 2
Automated Security

Build Level 2: Build Service – the only way to ensure the
security of the software you work with and produce is to build it
yourself from source code. Accordingly, Level 2 introduces not
only a build service but also a signing service to ensure that
neither the package nor the provenance attestation generated
for it were tampered with after being created. A downstream
service would then verify the authenticity of the signatures.

Build Level 3: Hardened Builds – to help ensure the build
service cannot be compromised (such as happened with
Solarwinds), a number of controls should be put in place to
harden the build service, including:

Implementing SSDF and SLSA best practices will go a long
way to securing your software development process from end
to end, but even automated processes can be bypassed.

The	next	 stage	 in	 the	 journey	 to	 software	 supply	 chain	
security	focuses	on	implementing	a	governance	layer	to	
ensure	 that	 the	 best	 practices	 you’ve	 put	 in	 place	 are	
actually	followed.	

• Implement pre-scripted, parameterless builds to ensure hackers
can’t get access to/edit build scripts.

• Create build environments that are ephemeral, isolated, and
hermetically sealed (i.e., no access to the internet) to ensure
against corrupted environments and/or hackers compromising
the build process.

• Isolate the signing service introduced in Build Level 2 to ensure
hackers can’t access secrets used to sign the provenance.

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/

3232

Stage 0
 Complete Anarchy

Stage 1
 Observable Chaos

Stage 2
 Automated Security

Stage 3
 Verifiable Safety

Stage 4
 Anti Entropy

Stages To A
Secure Software
Supply Chain5

33

Stage 3
Verifiable Safety

-Ronald Reagan

Trust	but	verify

“
“

34

Stage 3
Verifiable Safety

Introduction
Software vendors have increasingly been subject to bad
actors who are exploiting weaknesses within the digital
supply chain to penetrate internal development environments
and compromise software development processes. The
result is tens of thousands of end customers compromised
by simply installing a software update from a trusted vendor.
Organizations long focused on software vulnerabilities have
been blindsided, and are only recently becoming aware of
other attack vectors inherent in their software supply chain.

As one global survey on supply chain security pointed out:

In other words, these organizations had a high level of confidence
in the processes and best practices they had put in place. Drilling
in on their practices, however, quickly revealed that almost half
of all respondents were only halfway done with their supply chain
security initiatives.

Typically, a supply chain attack starts with the compromise of
an open source artifact, which, once it enters an organization,
provides a potential vector of compromise. Alternatively, since
most development environments are connected to the internet,
developer and/or build systems may be compromised directly.
From that point, software produced by the compromised
organization becomes a danger to all of their customers, where
the routine task of distributing, installing and/or updating software
from a trusted vendor now carries with it significant risk.

• 95% of respondents said their software supply chains are secure
or very secure.

• 93% said they’re prepared to deal with ransomware or
cyberattacks resulting from a software supply chain incident.

In	 other	 words,	 	 software	 vendors	 are	 now	 the	
frontline	of	security	for	their	customers.	

3434

https://www.cloudbees.com/c/cloudbees-global-security-survey

35

Stage 3
Verifiable Safety

When organizations purchase software, whether applications
for deployment or tools for code development, the expectation
is that they are buying secure software. Software supply chain
security is actually the responsibility of both vendors and
customers, but at this point in time it isn’t a priority for either
of them because:

However, this attitude is changing:

As a result, software vendors should increasingly expect
contracts to include language that holds them accountable
for the security risks of their software, and by extension, the
supply chain used to create it. Features may still be the driver
of a sale, but security is more and more becoming the blocker.

With that in mind, this chapter focuses on Stage 3 (Verifiable
Safety) of the Secure Supply Chain Journey, which can help
organizations ensure the best practices put in place during
Stage 2 are actually being used to help secure their software
supply chain.

• Security does not directly contribute to vendor revenue.
• Security is a secondary concern for software vendors who

promote a culture of “move fast and break things.”
• Customers purchase software based on features/functionality,

while security is expected to be “built in.”

• Companies are beginning to request proof of software supply
chain security from their vendors by having them fill out
complicated security questionnaires.

• The US Government is proposing to let companies sue software
vendors unwilling to secure their software supply chain,
effectively their ability to hide behind their EULA.

• President Biden’s Executive Order 14028 has made supply chain
security a requirement for US government vendors.

3535

https://www.activestate.com/blog/how-to-avoid-software-supply-chain-fines/
https://www.activestate.com/blog/sboms-attestations-us-government-deadlines-for-implementation/

36

Stage 3
Verifiable Safety

Verifiable Safety

Tooling supports observability
Best	practices	followed
Governance in place

Enlightenment

Stage 3

Complete Anarchy

Non-standard tooling
Lack	of	standard	processes
Lack	of	governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack	of	standard	processes
Lack	of	governance

Awareness

Stage 1

Automated Security

Tooling supports observability
Best	practices	followed
Lack	of	governance	

Empowerment

Stage 2

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

37

Stage 3
Verifiable Safety

	 The	problem	is	that	at	a	lot	of	big	
companies, process becomes a substitute

for	thinking

-Elon Musk
““

38

Stage 3
Verifiable Safety

The third stage on the journey to a secure software supply
chain involves implementing governance controls to ensure
that best practices discussed in Stage 2 are being followed.
Without enforcement, best practices all too often amount to
nothing more than good intentions leaving your processes
exposed to the elements that can erode them. The tools
and processes in this stage can help ensure that your best
practices are actually practiced.

Characteristics include:

The simplest way to meet your goals is to deploy a flexible
policy engine as part of your automated processes. By defining
rules in the policy engine and placing it at key points in your
software development processes, you can enforce how and
when software supply chain security goals are achieved.

Depending on your specific software development processes,
there are likely a number of areas that could benefit from the
strong governance a policy engine can offer. Here, We’ll focus
on three problem areas that most enterprises wrestle with
when it comes to securing their software supply chain.

• Standard Tooling - implement enforcement tooling, such as a
policy engine which can enforce predefined rules.

• Standard Practices - implement secure software supply chain
best practices when importing third-party code, as well as when
building software artifacts.

• Governance - implement a governance layer to enforce best
practices and ensure supply chain security criteria are met.

Enlightenment
Stage 3
Verifiable Safety

39

Stage 3
Verifiable Safety

Every enterprise has best practices around updating and
remediating their codebase. Unfortunately, as surveys
continue to show, these processes are rarely followed:

A codebase that is rarely updated will contain more
vulnerabilities, bugs and performance issues over time,
posing a greater risk to anyone that runs it. But the tradeoff
is development time and resources, which are assumed to be
better spent on new features/functionality. Besides, nobody
wants to be accused of breaking the build should an upgrade
effort not go smoothly.

Instead of a “big bang” approach, consider devoting 10-20%
of each development sprint to addressing outdated and
vulnerable packages. One of the best areas to enforce this
behavior is in your artifact repository, which may already have
governance capabilities built in. If not, you can use a policy
engine to flag:

“Open source libraries are constantly evolving: what appears
secure today may not be tomorrow. Despite this dynamic
landscape 70 percent of the time, developers never update
third-party libraries after including them in a codebase.”

80
%

60
%

2018 2019 2020 2021

78 Of code in codebases was open source 81% Contained at least one vulnerability

88% 85%Contained components that had no
new development in two years

Contained open source that was
more than four years out-of-date

Source: Open Source Security and Risk Analysis Report

And as the State of Software Security report reminds us:

Codebase Integrity

• Package datedness - ie., disallow use of packages greater
than X months old

• Package vulnerability - i.e., disallow use of packages with a
severity rating greater than or equal to Y

A second process where governance can be used to enforce
codebase integrity is during CI/CD environment creation,
which brings us back to SBOMs and Attestations.

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

40

Stage 3
Verifiable Safety

• Container runtime environments are built with correct versions of
the correct open source packages, as well as ensure all required
packages are present - no more, and no less.

• No packages feature vulnerabilities of a severity level that the
organization considers a threat.
• To ensure against false positives, SBOM specifications like

CycloneDX and SPDX include metadata (such as Vulnerability
Exploitability eXchange or VEX data) that lets developers
specify whether shipped vulnerabilities are actually exploitable.

• Provenance Attestations can be checked to ensure code has
been sourced correctly.

• Verification Summary Attestations (VSAs) can be checked to
ensure whether prebuilt packages/artifacts have been built in a
secure manner.

Similarly:

While container integrity is key, the software produced by
the CI/CD process is only as secure as the weakest link in
the build process, which means we need to talk about build
reproducibility.

While Software Bills of Material (SBOMs) are relatively new,
many enterprises already have the capability to generate
them. Unfortunately, once generated, they rarely do anything
with them, which is a shame since they can act as a key
enforcement mechanism.

For example, containers used in the CI/CD process often get
out of date, but SBOMs can ensure that:

Container Integrity

https://cyclonedx.org/ext/vulnerability/
https://spdx.dev/

41

Stage 3
Verifiable Safety

Build Integrity
When it comes to the build process, a key best practice is build
reproducibility. Unfortunately, it’s rarely implemented due to
the complexity associated with creating deterministic builds.
For example, ActiveState’s State of Supply Chain Security
survey of more than 1500 organizations big and small across
the globe showed that only ~22% of respondents could claim
build reproducibility.

A reproducible build is one in which the same “bits” input
should always result in the same “bits” output. If they don’t,
there is no guarantee the artifacts you’re working with haven’t
changed from build to build, which makes it difficult to
ascertain the security and integrity of your software.

The key to reproducibility is ensuring deterministic builds,
which requires enforcement at multiple levels:

• Source Code Integrity - ensure all code required for a
build is present locally. This typically means vendoring all your
dependencies/transitive dependencies into your code repository
and building them yourself, which means you’ll also need to be
generating your own Attestations and SBOMs.

• Build Process Integrity - ensure that all builds are script-
driven, as well as that all build environments are ephemeral,
isolated and hermetically sealed.

• Fail “Safe” - if the hashes of the artifacts produced at any
stage in the build process do not match the expected result, the
build process should fail with all artifacts discarded.

Implementing governance for codebases, containers and
builds will go a long way to ensuring you achieve your software
supply chain security goals, but the threat landscape is
continually changing. The next stage in the journey focuses
on proactive measures you can take to head off looming
threats and uncover potential weak links in your software
supply chain.

4141

https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/
https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/

4242

Stage 0
 Complete Anarchy

Stage 1
 Observable Chaos

Stage 2
 Automated Security

Stage 3
	 Verifiable	Safety

Stage 4
 Anti Entropy

Stages To A
Secure Software
Supply Chain5

43

Stage 4
Anti Entropy

“

–	President	Biden’s	Executive	Order	14028

 The private sector must adapt to the
continuously changing threat environment,
[and]	ensure	its	products	are	built	and	

operate securely.
“

44

Stage 4
Anti Entropy

Introduction
The software supply chain threat landscape is evolving far
faster than most organizations are able to keep up with. For
example:

Not only is the blast radius of supply chain attacks expanding,
but the vectors of attack are proliferating, as well. Tread
carefully.

Capterra’s 2023 Software Supply Chain Survey found that 61%
of companies have been impacted by a supply chain attack
in the last 12 months, yet less than half of organizations rate
software supply chain threats as “high risk.” It’s this kind of
disconnect that provides bad actors fertile ground.

Vendor Vector Impact

Solarwinds,
December 2020

Malicious DLL
inserted into

CI/CD prior to
signing

• 80% of Fortune 500
• Top 10 US telcos
• Top 5 US accounting firms
• CISA, FBI, NSA
• All 5 arms of the US military

Microsoft Exchange,
March 2021

Compromised
servers

• 400,000 servers

Kaseya,
July 2021

Ransomware • 50 MSPs
• 800-1500 businesses worldwide

WordPress,
January 2022

Plugin
backdoored

• 40 themes
• 53 plugins
• 360,000 sites

3CX,
March 2023

Trojanized installer • 12M users
• 600K businesses worldwide

4444

45

Stage 4
Anti Entropy

Unfortunately, it’s unreasonable to expect the greater
community of overworked and unpaid open source authors
to close the holes. According to a recent Tidelift survey,
maintainers of open source software have enough on their
plate without having to worry about supply chain security:

https://tidelift.com/open-source-maintainer-survey-2023

46

Stage 4
Anti Entropy

Complete Anarchy

Non-standard tooling
Lack	of	standard	processes
Lack	of	governance

Ignorance

Stage 0

Automated Security

Tooling supports observability
Best	practices	followed
Lack	of	governance	

Empowerment

Stage 2

Observable Chaos

Tooling supports observability
Lack	of	standard	processes
Lack	of	governance

Awareness

Stage 1

Verifiable Safety

Tooling supports observability
Best	practices	followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana
Stage 4

All of which means that even if you have a plan and are well
on your way to implementing it, you’ll need to start thinking
about how to avoid being blindsided by the quickly evolving
threats across the supply chain landscape. After all, while best
practices evolve over time, so does hacker ingenuity.

With that in mind, this chapter focuses on Stage 4 (Nirvana) of
the Secure Supply Chain Journey, which can help organizations
future-proof their software supply chain by proactively
identifying and planning for emerging threats, as well as
ensuring cultural buy-in to prevent erosion over time.

47

Stage 4
Anti Entropy

74%	of	IT	pros	believe	technologies	like	
static and dynamic application security
testing	[SAST	&	DAST]	are	important,	but	
feel	that	those	technologies	aren’t	enough	
to	protect	them	from	supply	chain	threats

Reversinglabs

““

48

Stage 4
Anti Entropy

If you’ve reached the fourth stage on the journey to a secure
software supply chain, take a moment to celebrate the
accomplishment. Not only do you now know where all the
skeletons in your supply chain live, but you’ve got the best
practices in place to deal with them, and the governance to
ensure they don’t accidentally come back to haunt you. No
mean feat at a time when the cost of software supply chain
attacks is expected to exceed $45B.

Having reached the pinnacle of your journey all that’s left to do
is make sure you can’t easily be toppled off. That means getting
a handle on existing and emerging threats, as well as ensuring
your controls are resilient enough to withstand them. But it also
means fostering a culture that internalizes those needs, as well.

Some of the tools and practices that can help with Stage 4
include:

Keep in mind that your software supply chain is only as strong
as its weakest link, which is constantly being redefined as
new vulnerabilities are discovered and hackers explore new
tools, targets and tactics. To keep up, you’ll need a repeatable
process that can help identify threats and evaluate the
effectiveness of existing systems/controls.

• Standard Tooling - implement threat modeling tooling that can
help visualize systems, flows and vectors of attack.

• Standard Practices - simulate and analyze the effect of
attacks, both when key controls are present and when they’re not
in order to assess the effectiveness of/need for redundancy.

• Governance - implement a culture of software supply chain
security that truly makes it everyone’s responsibility.

Nirvana
Stage 4
Anti Entropy

https://www.juniperresearch.com/press/press-releases/study-reveals-staggering-cost-of-software-supply

49

Stage 4
Anti Entropy

• Identify the entities/assets subject to attack.
• Enumerate the vectors of attack, as well as their impact.
• Implement solutions to reduce the risk.
• Assess the effectiveness of the solutions.

The process of threat modeling is well known in the domains
of application and system/network security, but none of the
popular threat modeling frameworks were built to specifically
address software supply chain security. However, threat
modeling general principles can still be applied:

4949

50

Stage 4
Anti Entropy

• Google’s software supply chain threats diagram highlights
potentially vulnerable entry points across a typical software
development lifecycle:

Conduct Open-Source
Supply Chain Attack

Create Name Confusion
with Legitimate Package

Develop and Advertise Distinct
Malicious Package from Scratch

Combosquating

Altering Word Order

Manipulating Word Separators

Typosquatting

Built-In Package

Brandjacking

Omitting Scope or Namespace

Similarity Attack Mask Legitimate
Package

Dangling Reference

Prevent Update to Non-Vulnerable Version

Distribute as
Package Maintainer

Inject into
Hosting System

Take-over Legitimate Account

Compromise Maintainer System

Compromise User
(Project Maintainer/Administrator)

Compromise Hosting System

Change Ethos

Become a
Maintainer

Bribe or Blackmail
Legitimate User

MITM Attack

DNS Cache Poisoning

Tamper Legitimate URL

Abuse Dependency Resolution Mechanism
Subvert Legitimate Package

Inject Sources of
Legitimate Package

Inject During the Build
of Legitimate Package

Distribute Malicious Version
of Legitimate Package

Because the software supply chain is both wide and deep, it
may be easier to identify vulnerable entities by enumerating
known attacks and their targets. There are two useful
approaches here:

• SAP’s software supply chain risk explorer provides an interactive attack
tree, starting with abstract, top-level goals and drilling down to identify
known attack methods and techniques. For example:

https://cloud.google.com/software-supply-chain-security/docs/attack-vectors
https://sap.github.io/risk-explorer-for-software-supply-chains/

51

Stage 4
Anti Entropy

• Seed public repositories with “dummy” typosquatted or
brandsquatted malware to test your import pipeline. Although
researchers have taken this approach in the past, it’s not
recommended since administrators of public repositories
already have more than enough work managing the flood of real
malware.

• Inject known malware in a controlled manner into your
import pipeline, artifact repository, CI/CD pipeline, etc. Getting an
example of malware can be problematic since public repositories
are quick to remove malicious packages once identified. Consider
leveraging ActiveState’s repository of Python, Perl, Ruby, etc
malware that we’ve removed from our ActiveState Platform
catalog and archived for researchers.

• Take a “Chaos Monkey” approach to help flesh out a
defense-in-depth strategy using redundant instances and
controls. Netflix’s Chaos Monkey randomly terminates instances
in production to help identify single points of failure.

While these techniques will help ensure your systems and
controls are both strong and resilient, attacks are always
evolving. Threat modeling should be an ongoing, or at least
a periodic practice to ensure your software supply chain
remains secure.

Risk Score = Probability x Impact
where Probability & Impact can be ranges as opposed to
specific values

Once you’ve found the weakest points and plugged them, you’ll
want to evaluate them. There are a number of approaches you
can take, including:

Using these two assets, you should be able to enumerate the
threats, as well as known vectors and targets of attack. If you’re
like most organizations, you’ll end up with quite an extensive
list, which means you’ll need to prioritize your approach by
assigning a risk score to each threat/asset:

5151

https://www.activestate.com/blog/how-to-prevent-dependency-confusion/
https://github.com/ActiveState/MalwareArchivist
https://netflix.github.io/chaosmonkey/

52

Stage 4
Anti Entropy

Cultural Buy-In
Finally, the last step is often the most difficult, and the most
important: getting cultural buy-in. Traditionally, developers,
DevOps and other coders are rarely incentivized to emphasize
security at the expense of deliverability and features. But
without their buy-in, you will always be fighting an uphill battle.

While some frameworks insist that universal buy-in be the
starting point of any software supply chain security initiative,
we’ve found that it’s always easier to get dev buy-in once you
can show them the systems and processes you’ve put in place
won’t slow them down.

At ActiveState, we’ve spent more than twenty years ensuring
that the easiest way to work with open source just happens to
be the most secure. And now with the ActiveState Platform,
organizations can benefit from:

• SLSA Build Level 3-compliant open source runtime environments
automatically built from vetted source code in a repeatable
manner, along with the attestations to prove it.

• A universal package management tool that simplifies dependency
and environment management.

All of which makes it easier for developers to build and use
open source, while making it safer for enterprises to adopt.

5252

53

Stage 4
Anti Entropy

Conclusions
The journey to a secure software supply chain is just that:
a journey, rather than a destination. After all, bad actors will
always come up with novel approaches to find and exploit the
weakest link in your software supply chain. It’s also important
to realize that your supply chain is never set in stone:

• Open source authors change
• Packages are constantly updated, become vulnerable, and get

patched
• Languages go EOL
• Repositories move
• Trusted vendors change

Our Journey to a Secure Software Supply Chain is a good
overview, but when it comes to implementation, the devil
is always in the details. ActiveState’s experts can help you
understand what supply chain security can mean for your
organization, as well as provide advice on the best way to
implement it. Feel free to reach out to us at any time on your
journey.

References:
Check out all the resources referred to in the book on one
handy page.

https://www.activestate.com/journey-to-software-supply-chain-security-resources

54

Stage 4
Anti Entropy

ActiveState is the de-facto standard for millions of developers around the world who have been using our
commercially-backed, secure open source language solutions for over 20 years. Automatically build secure
open source language runtime environments (such as Python, Perl, Ruby and more) from source code for
Windows, Linux or Mac—all without requiring language or operating system expertise.

www.activestate.com
Toll-free in NA: 1-866.631.4581
solutions@activestate.com

©2023 ActiveState Software Inc. All rights reserved. ActiveState®,
ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™, and The Open Source Languages Company™
are all trademarks of ActiveState.

Dana Crane
With 25+ years in the software industry, Dana has had his share of both crossing
and falling into the chasm. He’s currently the Product Marketing Manager at
ActiveState Software. You can find more of his work at danacrane.medium.com
and danacrane.substack.com

Scott Robertson

Passionate about creating products that solve real problems, Scott drives
ActiveState’s technology vision based on his experience of over 20 years knees
deep in code. Over that time, he’s authored a book, founded 3 startups and sold one
of them. As ActiveState’s CTO, he understands the pains faced in pushing software
into production and the challenges big business has to stay fast and relevant. He
helps companies do both.

About the Authors

About ActiveState

