
11 The Journey to a Software Supply Chain SecurityThe Journey to a Software Supply Chain Security

The Journey To
Software Supply
Chain Security

Dana Crane
with Scott Robertson

22

Stage 0
	 Complete Anarchy

Stage 1
	 Observable Chaos

Stage 2
	 Automated Security
	
Stage 3
	 Verifiable Safety

Stage 4
	 Anti Entropy

Stages To A
Secure Software
Supply Chain5

3

Stage 0
Complete Anarchy

Introduction
HIstorically, hackers have searched for needle-sized
exploits in a worldwide haystack of corporations. All that
changed in 2020 with the SolarWinds hack, which showed
that one compromised development environment at a
key software vendor can result in trojanized patches and
software updates being propagated downstream to tens of
thousands of customers.

In other words, bad actors have discovered economies
of scale: a single cyberattack against a popular software
vendor can grant hackers access to corporations and
governments around the globe in today’s internet-
connected world.

Copycat attacks quickly followed:

SolarWinds became the poster child for software supply
chain attacks when hackers inserted a malicious DLL into their
software build process prior to the signing step. Signing is widely
considered a best practice to ensure that code has not been
altered or corrupted since the application was signed.

But the real value of signing to most customers is the
establishment of trust. This is why the SolarWinds hack was
especially pernicious: it effectively undermined trust in signed
software.

Source: ENISA Threat Landscape for Supply Chain Attacks

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks

4

Stage 0
Complete Anarchy

https://www.sonatype.com/state-of-the-software-supply-chain/introduction

State of the Software Supply Chain1

	 There has been an astonishing 742%
average annual increase in Software Supply

Chain attacks over the past 3 years.“ “

5

Stage 0
Complete Anarchy

•	 Import – the process of importing third-party tools,
libraries, code snippets, packages and other software
resources in order to streamline development efforts

•	 Build – the process of compiling, building and/or
packaging code, usually via an automated system that
also executes tests on built artifacts/applications

•	 Ship/Use – the process of shipping software to
customers, and working with/deploying built artifacts in
development, test and production environments.

Kaseya in 2021 confirmed the fact that software vendors are
now the front line of defense for their customers when a security
flaw in their server-side software was exploited by REvil. A
malicious script was then sent to all client customers, delivering
the REvil ransomware and encrypting their systems.

Traditionally, the software industry has focused primarily
on addressing security vulnerabilities in their software’s
codebase. Unfortunately, the software supply chain
problem is far broader and deeper, spanning a number of
key software development processes:

55

https://en.wikipedia.org/wiki/Kaseya_VSA_ransomware_attack

6

Stage 0
Complete Anarchy

The problem is compounded because the breadth and
depth of the software supply chain affords multiple points
of entry for malicious actors who are always looking for the
weakest link in the chain to exploit:

Security has always been seen as a blocker to getting
software to market, and with the exception of security-
conscious industries, is typically relegated to a back seat
in the software development process. In other words,
the threat to revenue is often seen as greater than any
potential security threat.

As a result, the US government has taken the
unprecedented step of effectively legislating software
supply chain security, which will force US government
software suppliers to comply with a set of supply chain
security requirements by June 11, 2023. Detailed in the
government’s Executive Order 14028 focused on “improving
the nation’s cybersecurity”, these requirements can be met
by following the recommendations laid out in this eBook.

•	 Breadth – most organizations work with multiple open
source languages, and import their code from more than
one public repository. Because there are no industry-wide
standards in place today, each language and repository
must be treated uniquely.

•	 Depth – There is a large set of best-practice application
and system security & integrity controls that can help, but
only the largest enterprises can hope to implement and
maintain them all.

•	 Change – no supply chain is ever set in stone: open
source authors change; packages are constantly
updated, become vulnerable, and get patched.
Languages go EOL, repositories move, trusted vendors
change, etc, making it difficult to keep up.

CircleCI, the popular CI/CD vendor, offers the latest proof that
the industry has learned nothing from the SolarWinds incident,
and continues to have an appetite for risk that far outweighs
the perceived threat to their software supply chain.

It also illustrates the need to secure not just the build process,
but developer desktop environments as well. This is potentially a
far more challenging task given developer ingenuity at finding
creative solutions to restrictive problems.

https://circleci.com/blog/jan-4-2023-incident-report/

7

Stage 0
Complete Anarchy

Every journey begins with a single step, but for many
smaller organizations the first step can represent such a
significant cultural change that they never commit to it. On
the other hand, established enterprises are likely to be well
down the path, having had best practices and supporting
tooling in place for many years.

With that in mind, organizations that want to secure their
supply chain can use the following journey to create a
roadmap of tools, processes and initiatives, which will also
allow them to comply with key US secure supply chain
requirements:

The Five Stages to Software Supply Chain
Security

8

Stage 0
Complete Anarchy

Automated Security

Tooling supports observability
Best practices followed
Lack of governance

Empowerment

Stage 2

Complete Anarchy

Non-standard tooling
Lack of standard processes
Lack of governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack of standard processes
Lack of governance

Awareness

Stage 1

Verifiable Safety

Tooling supports observability
Best practices followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

9

Stage 0
Complete Anarchy

 https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/

32% of ActiveState Supply Chain Security
Survey Respondents Agree

“ “	 Our current practice of implicitly
trusting the packages we get from public
repositories is no better or worse than the

rest of the software industry.

https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/

10

Stage 0
Complete Anarchy

Most organizations would hesitate to characterize the way
they work as “complete anarchy,” but anarchy is really a
double-edged sword, allowing organizations to exist on the
basis of voluntary cooperation despite the disorder due to a
lack of controlling systems.

Typical characteristics include:

While the above description may seem daunting, in
practice, this way of working can actually be quite
empowering, liberating everyone to be as creative as
possible. But it also means that security is an afterthought,
if it’s thought of at all.

•	 Non-Standard Tooling - while there is agreement
on shared tooling (such as the code repository, for
example), every developer has their own set of preferred
desktop tools.

•	 Lack of Standard Processes - code may or may not
be peer reviewed; warnings are investigated (or not)
irrespective of severity; libraries are updated (or not)
depending on local need, and so on.

•	 Lack of Governance - with no standards to apply, it’s
pointless to introduce a governance layer to ensure
processes are followed.

Ignorance
Stage 0
Complete Anarchy

11

Stage 0
Complete Anarchy

For example, when it comes to importing third-party, open
source code:

•	 No scans are run against the imported code prior to
use, opening wide the door to threats like known critical
vulnerabilities being installed in dev, test and CI/CD
environments.

•	 Binary packages are imported prebuilt from public
repositories, rather than being built from vetted source
code, potentially introducing compromised code to the
codebase.

•	 Public repositories are implicitly trusted, despite the
fact that they offer no guarantees as to the security
and integrity of the packages they offer. This can be
problematic because:
•	 Open source repositories contain hundreds of

thousands of packages created by tens of thousands of
authors and maintainers, all of whom must be trusted.

•	 Most public repositories have no gatekeepers, and
only a limited set of safeguards (such as two-factor
authentication). There’s simply nothing stopping
anyone from uploading malware since their code
will not be audited, independently reviewed, or even
scanned in depth.

1111

12

Stage 0
Complete Anarchy

This reliance on prebuilt components typically means
the only artifacts being generated by a build process are
versions of the organization’s application/service. But a lack
of standard processes and security safeguards can mean:

•	 Builds are created in a non-reproducible way, making it
very difficult to verify issues from one build to the next.

•	 Build scripts can be modified at any point, providing a
foothold for bad actors to compromise them and exploit
the build system.

•	 Build environments for each step in the process are
reused, increasing the chance they become corrupted or
compromised.

•	 The build system is connected to the Internet, potentially
allowing dynamic packages to include remote,
unexpected resources.

•	 Artifacts generated by the build process are unsigned,
meaning there is no way to verify whether they have
been compromised between the time they were built and
the time they’re deployed

If all this sounds like your organization, you most likely work
at a startup. But it can also be characteristic of open source
or ad hoc projects – anywhere that developers gather to
collaborate without the friction of process-heavy software
development.

Unfortunately, moving from Stage 0 to Stage 1 will
likely be the greatest challenge you face on your
software supply chain journey since it will require a
completely different culture.

After all, ignoring security is not a sign of wilful ignorance, but
rather an expedient designed to maximize code output. As
such, it may not be possible to implement Stage 1 until you’ve
released your product and established a market for it.

1313

Stage 0
	 Complete Anarchy

Stage 1
	 Observable Chaos

Stage 2
	 Automated Security
	
Stage 3
	 Verifiable Safety

Stage 4
	 Anti Entropy

Stages To A Secure
Software Supply
Chain5

14

Stage 1
Observable Chaos

Solarwinds hack impacted:
•	 80% of the Fortune 500

•	 Top 10 US telecoms

•	 Top 5 US accounting firms

•	 CISA, FBI, NSA & all 5 branches of the US military

$24

$22

$20

$18
Dec 14 Dec 15 Dec 16

15

Stage 1
Observable Chaos

The software supply chain has increasingly come under
attack since the start of the pandemic as bad actors
target software development environments with the goal
of embedding malicious code in a popular application
that gets deployed to tens of thousands of customers: one
attack that can potentially compromise millions.

Software vendors have long been focused on dealing with
the problem of software vulnerabilities, but the software
supply chain is actually much broader, encompassing all
of the code that vendors import, build and ship. In other
words, the software supply chain extends across the entire
software development lifecycle (SDLC), including all of the
processes and systems that interact with it.

And therein lies the problem: the need for software vendors
to secure everything, whereas bad actors need only a single
weak link to exploit. Worse, as security is increased, usability
often suffers, which typically manifests by delaying time
to market. This is one of the key reasons why initiatives
like DevSecOps, with its “shift left” mentality that imposes
security controls throughout the SDLC, has struggled to gain
traction.

Introduction

1515

16

Stage 1
Observable Chaos

•	 SBOMs – vendors must provide a machine-readable
list of all the components that make up their software
application, including third party libraries and
integrations.

•	 Secure Software Development – vendors must adopt
secure software development best practices, starting
with detecting and resolving security vulnerabilities.

In response to the growing threat, as well as the reluctance
of software vendors to embrace a security-first mindset, the
US government has taken the exceptional step of imposing
supply chain security requirements. Effective from June
2023, any vendor of software deployed at (or even coming
in contact with systems at) US government agencies or
departments must comply or risk losing their contract.
While the guidelines are extensive, key requirements for
software vendors include:

In much the same way that European Union (EU) General
Data Protection Regulation (GDPR) requirements were
adopted worldwide for fear of losing out on EU revenue, the
US’ secure supply chain requirements are likely to become
just as widespread.

With that in mind, this chapter focuses on Stage 1
(Observable Chaos) of the Secure Supply Chain Journey,
which can help organizations get started on the path to
securing their software supply chain and complying with US
requirements:

https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

17

Stage 1
Observable Chaos

Complete Anarchy

Non-standard tooling
Lack of standard processes
Lack of governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack of standard processes
Lack of governance

Awareness

Stage 1

Automated Security

Tooling supports observability
Best practices followed
Lack of governance

Empowerment

Stage 2

Verifiable Safety

Tooling supports observability
Best practices followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

18

Stage 1
Observable Chaos

Customer quote from one of the world’s largest ISVs

 Observability means transparency for all
stakeholders who need to know what’s in
the software at a granular level, and trust

that what they are receiving is secure.
““

19

Stage 1
Observable Chaos

Awareness
Stage 1
Observable Chaos

The first real step on the journey to a secure software supply
chain is determining the security status of your existing
codebase, and observing how that status evolves over time.
While you may have left behind the “complete anarchy”
described in Stage 0, a lack of processes and governance
mean Stage 1 can still feel chaotic as you get your arms
around the problem.

Characteristics include:

•	 Standard Tooling - a set of common software tools
that provide insight into key security measures, such as
vulnerabilities, unsecure code, malicious packages, etc.

•	 Lack of Standard Processes - vulnerabilities are
remediated (or not) irrespective of criticality; security
warnings are investigated (or not) irrespective of
severity, and so on.

•	 Lack of Governance - with no standards to apply, it’s
pointless to introduce a governance layer to ensure
processes are followed.

20

Stage 1
Observable Chaos

Traditionally, observability involves investigation of
logs, metrics and traces in order to monitor the health,
performance, and status of your software. While those are
laudable goals, Stage 1 on the journey to a secure supply
chain is focused squarely on observing software security
characteristics.

While there are any number of security tools available,
purchasing, implementing and maintaining them quickly
becomes a limiting factor, especially since this stage is
generally characterized by the culture at small businesses.
Given that modern software is primarily composed of open
source software (usually >80% of all code), the biggest bang
for the buck can be gained from just two classes of software
tools:

•	 Software Composition Analysis (SCA) - continually
scan the open source components in your application,
and provide key information such as software licenses,
deprecated dependencies, known vulnerabilities and
potential exploits.

•	 Software Bill Of Materials (SBOM) - used to create a
machine-readable list of all the software components in
an application, as well as any third-party integrations,
and provide detailed information about each.

2020

21

Stage 1
Observable Chaos

The lowest hanging fruit, and where most organizations
begin securing their software supply chain, is by addressing
Common Vulnerabilities and Exposures (CVEs) in their open
source software. While SCA tools will automatically detect
a vulnerability in your codebase and notify you about it,
decreasing Mean Time To Detection (MTTD), remediating
vulnerabilities typically requires a lengthy process:

•	 Investigate – depending on how a component has been
implemented, an application may or may not be subject
to a vulnerability. Developers need to dedicate time to
determine the impact.

•	 Rebuild – if a patch or upgrade is applied to a
component, there’s always the chance that the update
will break the build. Complications can also arise when
upgrades result in conflicts with other components,
leading to dependency hell.

•	 Retest – this task often includes manual testing in
addition to automated testing.

•	 Redeploy – organizations often need to schedule a
deployment time, or even wait for the next deployment
window if their production system is locked down.

All of which is why Mean Time To Remediation (MTTR) can
range from 60 to 150 days. And that’s the best case scenario,
since multiple reports consistently confirm that the vast
majority of codebases are never updated unless a critical
vulnerability of note (such as Heartbleed, Log4j, etc) forces a
revision.

Small businesses with limited resources may want to use
a service like Github’s Dependabot that not only notifies
you of vulnerabilities in your GIthub repository, but can also
help you automatically pull in an updated version of the
vulnerable component. ActiveState goes one step further,
automatically rebuilding your runtime environment with the
updated component, so you need only retest and redeploy
your application.

Software Vulnerabilities

https://www.veracode.com/state-of-software-security-report
https://www.activestate.com/blog/how-to-remediate-your-open-source-vulnerabilities-quicker/

22

Stage 1
Observable Chaos

Open Source Components
While it is a truism that you can’t secure what you don’t know
about, most organizations assume they know everything that
goes into creating their product. The reality is that

SBOMs let developers track the composition of their
software over time. Like a standard manufacturing Bill
Of Materials (BOM), SBOMs provide detailed information
about how to build a product from its component parts. In
manufacturing, the BOM lets manufacturers more easily
identify and trace defective and non-compliant parts.
Similarly, SBOMs let developers more easily identify and
trace vulnerable or non-compliant components.

For example, SBOMs can help with:

repositories, configuration files and even build scripts
only ever provide a single snapshot in time of an
ever-changing codebase as new packages are
evaluated, libraries are updated, and dependencies
shift.

•	 Achieving regulatory compliance by identifying
components that are disallowed within a compliance
framework like PCI-DSS, SOX, HIPAA, etc.

•	 Providing compatibility between old software packages
and OSS updates by identifying transient dependencies
that may have shifted.

•	 Licensing management/compliance by checking the
open source software licenses listed in the SBOM to
ensure that none are prohibited by your corporate
guidelines.

2222

23

Stage 1
Observable Chaos

For buyers, such as US government departments and
agencies, SBOMs allow them to easily identify the impact
of vulnerabilities across all the applications they deploy.
Fortunately, most SCA tools now include SBOM generation,
but many development platforms also offer plug-n-play
SBOM generation, including:

SCA, SBOM and vulnerability remediation tools are a good
starting point, but without a framework to ensure that
people, skills, and tools are being used in a consistent
manner, it’s just that: a start.

The next stage in the journey to software supply chain
security focuses on the import, build and deployment
processes you need to ensure that the tools are used
effectively and consistently.

•	 Microsoft’s SPDX sbom-tool
•	 GitLab’s CycloneDX generator
•	 Anchore’s SBOM GitHub Action
•	 ActiveState’s SPDX SBOM

2323

https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/#cyclonedx-software-bill-of-materials
https://github.com/marketplace/actions/anchore-sbom-action
https://www.activestate.com/resources/datasheets/improve-open-source-security-with-a-bill-of-materials/

2424

Stage 0
	 Complete Anarchy

Stage 1
	 Observable Chaos

Stage 2
	 Automated Security
	
Stage 3
	 Verifiable Safety

Stage 4
	 Anti Entropy

Stages To A
Secure Software
Supply Chain5

25

Stage 2
Automated Security

– US Armed Forces customer

	 We were surprised to find that one of
the biggest players in the Python market still
uses manual processes to build their distro.
Our security team wouldn’t let us use them.
““

26

Stage 2
Automated Security

Introduction
The rash of ransomware attacks, zero-day exploits, data
breaches, and so on that occurred over the course of
the pandemic has resulted in governments worldwide
effectively declaring war on the software supply chain.

The first skirmish has seen governments across the globe
draft legislation to mandate that software vendors secure
their software supply chain. The second volley has seen the
US government propose that courts be given the power to
enforce fines against software vendors unwilling to comply
with that legislation.

But even if only a single large market’s government
manages to pass their proposed legislation, all software
vendors worldwide that want to do business in that
country will need to get on board. The European Union’s
(EU) General Data Protection Regulation (GDPR) is a good
example, impacting not only European organizations but
all companies that want to conduct business with the EU
market.

But this explosion in supply chain attacks is just a symptom.
The actual root causes are many and varied, including:
•	 Software Vulnerabilities – typically a coding flaw in a

module of an application that compromises the security
of the software, thereby offering hackers a vector of attack
(i.e., log4j).

•	 Compromised Ecosystems – open source public
repositories can be compromised in a number of different
ways, including typosquatting, dependency confusion,
author impersonation, malware, and so on.

•	 Compromised Build Systems – artifact build systems
created without strict security and integrity controls can
allow hackers to inject compromised code.

•	 Compromised Delivery Systems – artifact delivery systems
created without strict security and integrity controls can
allow hackers to compromise updates, patches, new
releases, and so on.

2626

https://www.activestate.com/blog/understanding-secure-software-supply-chain-legislations-around-the-world/
https://www.activestate.com/blog/how-to-avoid-software-supply-chain-fines/
https://www.activestate.com/blog/how-to-avoid-software-supply-chain-fines/

27

Stage 2
Automated Security

In other words, the software supply chain extends across
the entire Software Development Lifecycle (SDLC). This is
why the US government tasked the National Institute for
Standards and Technology (NIST) to create a compendium
of security best practices not only for developers, but
suppliers and customers as well.

For software developers, the most practical reference
document is “Securing the Software Supply Chain:
Recommended Practices for Developers”, which details
a best-practices approach to implementing a Secure
Software Development Framework (SSDF), including:

If you’re like most mid-sized companies (or larger) that
characterize this stage on the Secure Supply Chain Journey,
these best practices shouldn’t come as a surprise. They’ve
been championed in one form or another for years. They
also contain overlapping requirements with existing
certifications and standards such as SOC2, PCI-DSS, ISO
27001, etc. which means you’re very likely to have a number
of these best practices already in place.

•	 Architecture & Design Review – developers, suppliers
and customers must work together to define software
requirements up front.

•	 Software Threat Modeling – security architects should
develop threat models for all critical components and
systems.

•	 Coding Standards – standard coding best practices
apply.

•	 Secure Library Checks – incorporate only third-party/
open source libraries that have been vetted by your
organization.

•	 Code & Executable Testing – use Static & Dynamic
Application Security Testing (SAST and DAST) apps, as well
as Software Composition Analysis (SCA) tools to identify
issues.

•	 Secure Build & Delivery – harden the development, build
and delivery environments.

https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

28

Stage 2
Automated Security

Complete Anarchy

Non-standard tooling
Lack of standard processes
Lack of governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack of standard processes
Lack of governance

Awareness

Stage 1

Automated Security

Tooling supports observability
Best practices followed
Lack of governance

Empowerment

Stage 2

Unfortunately, despite the fact that SSDFs have been with
us for decades, software vendors both big and small (from
Solarwinds to Kaseya to most recently CircleCI) were still
blindsided by the rising tide of software supply chain
attacks over the past three years. The missing component?
A secure software supply chain framework.

With that in mind, this chapter focuses on Stage 2
(Automated Security) of the Secure Supply Chain Journey,
which can help organizations implement and automate
best practices that can help secure their software supply
chain.

Verifiable Safety

Tooling supports observability
Best practices followed
Governance in place

Enlightenment

Stage 3

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

https://circleci.com/blog/jan-4-2023-incident-report/

29

Stage 2
Automated Security

[Software vendors] must be held liable
when they fail to live up to the duty of care
they owe consumers, businesses, or critical

infrastructure providers.

– US Government Administration proposing new legislation to
establish liability for software vendors

““

30

Stage 2
Automated Security

The second step on the journey to a secure software supply
chain involves implementing a supply chain framework.
While the SCA and SBOM tools discussed in Stage 1 provide
transparency into what’s in your software, the tools and
processes outlined here can help ensure that the third-
party code you import into your organization, as well as the
code you build and use are secure.

Characteristics include:

While we certainly don’t advocate abandoning any SSDF
standards you may have already implemented, you will
need to incorporate a software supply chain security
framework if you hope to avoid the growing tsunami of
supply chain attacks, as well as ensure you can comply
with US government supplier requirements.

The Supply chain Levels for Software Artifacts (SLSA)
security framework, long used by Google, has recently been
brought to market by the Open Source Software Foundation
(OSSF) in conjunction with a consortium of industry
collaborators. Implementing its controls and best practices
can help ensure that the code you import and/or build in
your organization is done in a secure manner.

•	 Standard Tooling - implement verifiable controls that
identify the provenance (i.e., the source) of the third-party
packages you import and build.

•	 Standard Processes - implement secure software supply
chain best practices when importing third-party code, as
well as when building software artifacts.

•	 Lack of Governance - a governance layer to ensure best
practices are followed is not required at this stage.

Empowerment
Stage 2
Automated Security

31

Stage 2
Automated Security

Build Level 1: Provenance – any code, library or open source
package imported into the organization must have a type
of software attestation known as a “provenance attestation”
that shows where the code was sourced from and how the
package was built:

A downstream system equipped with a tool like SLSA Verifier
can then be used to verify the provenance of the third-party
software.
The result is a chain of custody from the importing of code
to the building of artifacts to use by development teams
to incorporation into the final product, where every group
along the way can verify the security and integrity of the
components they use.

For example, ActiveState is currently working with open
source ecosystems like Python to enable authors and
maintainers to automatically generate provenance
attestations and upload them to the Python Package Index
(PyPI).

Until that process becomes commonplace across all open
source ecosystems, we recommend dependency vendoring
(i.e., downloading, vetting and building the source code)
of all the third-party packages you work with so you can
generate your own provenance attestations. Alternatively,
you can use the ActiveState Platform to automatically build
your open source packages and generate provenance
attestations for them.

Other attestation solutions include:

•	 Who built the package (person or system)
•	 What process/command was used
•	 What the input artifacts (e.g., dependencies) were

•	 Microsoft Azure Attestations – for Azure DevOps Builds

•	 GitHub Actions Attestations – for GitHub Actions builds

The SLSA 1.0 specification defines three Build Levels beyond
Build Level 0, which merely indicates no SLSA implementation
is present:

3131

•	 TestifySec Witness – for any build system

https://github.com/slsa-framework/slsa-verifier
https://www.activestate.com/resources/white-papers/scalable-dependency-vendoring/
https://www.activestate.com/solutions/attestations/
https://azure.microsoft.com/en-us/products/azure-attestation/#overview
https://github.com/in-toto/attestation/actions
https://www.testifysec.com/

32

Stage 2
Automated Security

Build Level 2: Build Service – the only way to ensure the
security of the software you work with and produce is
to build it yourself from source code. Accordingly, Level
2 introduces not only a build service but also a signing
service to ensure that neither the package nor the
provenance attestation generated for it were tampered
with after being created. A downstream service would then
verify the authenticity of the signatures.

Build Level 3: Hardened Builds – to help ensure the build
service cannot be compromised (such as happened with
Solarwinds), a number of controls should be put in place to
harden the build service, including:

Implementing SSDF and SLSA best practices will go a
long way to securing your software development process
from end to end, but even automated processes can be
bypassed.

The next stage in the journey to software supply chain
security focuses on implementing a governance layer to
ensure that the best practices you’ve put in place are actually
followed.

•	 Implement pre-scripted, parameterless builds to ensure
hackers can’t get access to/edit build scripts.

•	 Create build environments that are ephemeral, isolated,
and hermetically sealed (i.e., no access to the internet) to
ensure against corrupted environments and/or hackers
compromising the build process.

•	 Isolate the signing service introduced in Build Level 2 to
ensure hackers can’t access secrets used to sign the
provenance.

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/

3333

Stage 0
	 Complete Anarchy

Stage 1
	 Observable Chaos

Stage 2
	 Automated Security
	
Stage 3
	 Verifiable Safety

Stage 4
	 Anti Entropy

Stages To A
Secure Software
Supply Chain5

34

Stage 3
Verifiable Safety

-Ronald Reagan

Trust but verify

“
“

35

Stage 3
Verifiable Safety

Introduction
Software vendors have increasingly been subject to
bad actors who are exploiting weaknesses within the
digital supply chain to penetrate internal development
environments and compromise software development
processes. The result is tens of thousands of end customers
compromised by simply installing a software update from
a trusted vendor. Organizations long focused on software
vulnerabilities have been blindsided, and are only recently
becoming aware of other attack vectors inherent in their
software supply chain.

As one global survey on supply chain security pointed out:

In other words, these organizations had a high level of
confidence in the processes and best practices they had
put in place. Drilling in on their practices, however, quickly
revealed that almost half of all respondents were only halfway
done with their supply chain security initiatives.

Typically, a supply chain attack starts with the compromise of
an open source artifact, which, once it enters an organization,
provides a potential vector of compromise. Alternatively,
since most development environments are connected
to the internet, developer and/or build systems may be
compromised directly. From that point, software produced by
the compromised organization becomes a danger to all of
their customers, where the routine task of distributing, installing
and/or updating software from a trusted vendor now carries
with it significant risk.

•	 95% of respondents said their software supply chains are
secure or very secure.

•	 93% said they’re prepared to deal with ransomware or
cyberattacks resulting from a software supply chain
incident.

In other words, software vendors are now the
frontline of security for their customers.

3535

https://www.cloudbees.com/c/cloudbees-global-security-survey

36

Stage 3
Verifiable Safety

When organizations purchase software, whether
applications for deployment or tools for code development,
the expectation is that they are buying secure software.
Software supply chain security is actually the responsibility
of both vendors and customers, but at this point in time it
isn’t a priority for either of them because:

However, this attitude is changing:

As a result, software vendors should increasingly expect
contracts to include language that holds them accountable
for the security risks of their software, and by extension, the
supply chain used to create it. Features may still be the
driver of a sale, but security is more and more becoming
the blocker.

With that in mind, this chapter focuses on Stage 3
(Verifiable Safety) of the Secure Supply Chain Journey,
which can help organizations ensure the best practices
put in place during Stage 2 are actually being used to help
secure their software supply chain.

•	 Security does not directly contribute to vendor revenue.
•	 Security is a secondary concern for software vendors

who promote a culture of “move fast and break things.”
•	 Customers purchase software based on features/

functionality, while security is expected to be “built in.”

•	 Companies are beginning to request proof of software
supply chain security from their vendors by having them
fill out complicated security questionnaires.

•	 The US Government is proposing to let companies sue
software vendors unwilling to secure their software
supply chain, effectively their ability to hide behind their
EULA.

•	 President Biden’s Executive Order 14028 has made supply
chain security a requirement for US government vendors.

3636

https://www.activestate.com/blog/how-to-avoid-software-supply-chain-fines/
https://www.activestate.com/blog/sboms-attestations-us-government-deadlines-for-implementation/

37

Stage 3
Verifiable Safety

Verifiable Safety

Tooling supports observability
Best practices followed
Governance in place

Enlightenment

Stage 3

Complete Anarchy

Non-standard tooling
Lack of standard processes
Lack of governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack of standard processes
Lack of governance

Awareness

Stage 1

Automated Security

Tooling supports observability
Best practices followed
Lack of governance

Empowerment

Stage 2

Anti Entropy

Proactive Initiatives

Nirvana

Stage 4

38

Stage 3
Verifiable Safety

	 The problem is that at a lot of big
companies, process becomes a substitute

for thinking

-Elon Musk
““

39

Stage 3
Verifiable Safety

The third stage on the journey to a secure software supply
chain involves implementing governance controls to ensure
that best practices discussed in Stage 2 are being followed.
Without enforcement, best practices all too often amount to
nothing more than good intentions leaving your processes
exposed to the elements that can erode them. The tools
and processes in this stage can help ensure that your best
practices are actually practiced.

Characteristics include:

The simplest way to meet your goals is to deploy a flexible
policy engine as part of your automated processes. By
defining rules in the policy engine and placing it at key
points in your software development processes, you can
enforce how and when software supply chain security goals
are achieved.

Depending on your specific software development
processes, there are likely a number of areas that could
benefit from the strong governance a policy engine can
offer. Here, We’ll focus on three problem areas that most
enterprises wrestle with when it comes to securing their
software supply chain.

•	 Standard Tooling - implement enforcement tooling, such
as a policy engine which can enforce predefined rules.

•	 Standard Practices - implement secure software supply
chain best practices when importing third-party code, as
well as when building software artifacts.

•	 Governance - implement a governance layer to enforce
best practices and ensure supply chain security criteria
are met.

Enlightenment
Stage 3
Verifiable Safety

40

Stage 3
Verifiable Safety

Every enterprise has best practices around updating and
remediating their codebase. Unfortunately, as surveys
continue to show, these processes are rarely followed:

A codebase that is rarely updated will contain more
vulnerabilities, bugs and performance issues over time,
posing a greater risk to anyone that runs it. But the tradeoff
is development time and resources, which are assumed
to be better spent on new features/functionality. Besides,
nobody wants to be accused of breaking the build should
an upgrade effort not go smoothly.

Instead of a “big bang” approach, consider devoting 10-20%
of each development sprint to addressing outdated and
vulnerable packages. One of the best areas to enforce this
behavior is in your artifact repository, which may already
have governance capabilities built in. If not, you can use a
policy engine to flag:

“Open source libraries are constantly evolving: what appears
secure today may not be tomorrow. Despite this dynamic
landscape 70 percent of the time, developers never update
third-party libraries after including them in a codebase.”

80
%

60
%

2018 2019 2020 2021

78 Of code in codebases was open source 81% Contained at least one vulnerability

88% 85%Contained components that had
no new development in two years

Contained open source that
was more than four years
out-of-date

Source: Open Source Security and Risk Analysis Report

And as the State of Software Security report reminds us:

Codebase Integrity

•	 Package datedness - ie., disallow use of packages
greater than X months old

•	 Package vulnerability - i.e., disallow use of packages
with a severity rating greater than or equal to Y

A second process where governance can be used to
enforce codebase integrity is during CI/CD environment
creation, which brings us back to SBOMs and Attestations.

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

41

Stage 3
Verifiable Safety

•	 Container runtime environments are built with correct
versions of the correct open source packages, as well as
ensure all required packages are present - no more, and
no less.

•	 No packages feature vulnerabilities of a severity level
that the organization considers a threat.
•	 	 To ensure against false positives, SBOM

specifications like CycloneDX and SPDX include
metadata (such as Vulnerability Exploitability
eXchange or VEX data) that lets developers specify
whether shipped vulnerabilities are actually exploitable.

•	 Provenance Attestations can be checked to ensure code
has been sourced correctly.

•	 Verification Summary Attestations (VSAs) can be
checked to ensure whether prebuilt packages/artifacts
have been built in a secure manner.

Similarly:

While container integrity is key, the software produced by
the CI/CD process is only as secure as the weakest link in
the build process, which means we need to talk about build
reproducibility.

While Software Bills of Material (SBOMs) are relatively new,
many enterprises already have the capability to generate
them. Unfortunately, once generated, they rarely do
anything with them, which is a shame since they can act as
a key enforcement mechanism.

For example, containers used in the CI/CD process often get
out of date, but SBOMs can ensure that:

Container Integrity

https://cyclonedx.org/ext/vulnerability/
https://spdx.dev/

42

Stage 3
Verifiable Safety

Build Integrity
When it comes to the build process, a key best practice
is build reproducibility. Unfortunately, it’s rarely
implemented due to the complexity associated with
creating deterministic builds. For example, ActiveState’s
State of Supply Chain Security survey of more than 1500
organizations big and small across the globe showed that
only ~22% of respondents could claim build reproducibility.

A reproducible build is one in which the same “bits” input
should always result in the same “bits” output. If they don’t,
there is no guarantee the artifacts you’re working with
haven’t changed from build to build, which makes it difficult
to ascertain the security and integrity of your software.

The key to reproducibility is ensuring deterministic builds,
which requires enforcement at multiple levels:

•	 Source Code Integrity - ensure all code required for a
build is present locally. This typically means vendoring
all your dependencies/transitive dependencies into your
code repository and building them yourself, which means
you’ll also need to be generating your own Attestations
and SBOMs.

•	 Build Process Integrity - ensure that all builds are
script-driven, as well as that all build environments are
ephemeral, isolated and hermetically sealed.

•	 Fail “Safe” - if the hashes of the artifacts produced
at any stage in the build process do not match the
expected result, the build process should fail with all
artifacts discarded.

Implementing governance for codebases, containers
and builds will go a long way to ensuring you achieve
your software supply chain security goals, but the threat
landscape is continually changing. The next stage in the
journey focuses on proactive measures you can take to
head off looming threats and uncover potential weak links
in your software supply chain.

4242

https://www.activestate.com/resources/datasheets/software-supply-chain-security-survey-report/

4343

Stage 0
	 Complete Anarchy

Stage 1
	 Observable Chaos

Stage 2
	 Automated Security
	
Stage 3
	 Verifiable Safety

Stage 4
	 Anti Entropy

Stages To A
Secure Software
Supply Chain5

44

Stage 4
Anti Entropy

“

– President Biden’s Executive Order 14028

 The private sector must adapt to the
continuously changing threat environment,

[and] ensure its products are built and
operate securely.

“

45

Stage 4
Anti Entropy

Introduction
The software supply chain threat landscape is evolving far
faster than most organizations are able to keep up with. For
example:

Not only is the blast radius of supply chain attacks
expanding, but the vectors of attack are proliferating, as
well. Tread carefully.

Capterra’s 2023 Software Supply Chain Survey found
that 61% of companies have been impacted by a supply
chain attack in the last 12 months, yet less than half of
organizations rate software supply chain threats as “high
risk.” It’s this kind of disconnect that provides bad actors
fertile ground.

Vendor Vector Impact

Solarwinds,
December 2020

Malicious DLL
inserted into

CI/CD prior to
signing

•	80% of Fortune 500
•	Top 10 US telcos
•	Top 5 US accounting firms
•	CISA, FBI, NSA
•	All 5 arms of the US military

Microsoft Exchange,
March 2021

Compromised
servers

•	400,000 servers

Kaseya,
July 2021

Ransomware •	50 MSPs
•	800-1500 businesses worldwide

WordPress,
January 2022

Plugin
backdoored

•	40 themes
•	53 plugins
•	360,000 sites

3CX,
March 2023

Trojanized
installer

•	12M users
•	600K businesses worldwide

4545

46

Stage 4
Anti Entropy

Unfortunately, it’s unreasonable to expect the greater
community of overworked and unpaid open source authors
to close the holes. According to a recent Tidelift survey,
maintainers of open source software have enough on their
plate without having to worry about supply chain security:

https://tidelift.com/open-source-maintainer-survey-2023

47

Stage 4
Anti Entropy

Complete Anarchy

Non-standard tooling
Lack of standard processes
Lack of governance

Ignorance

Stage 0

Observable Chaos

Tooling supports observability
Lack of standard processes
Lack of governance

Awareness

Stage 1

Anti Entropy

Proactive Initiatives

Nirvana
Stage 4

All of which means that even if you have a plan and are well
on your way to implementing it, you’ll need to start thinking
about how to avoid being blindsided by the quickly evolving
threats across the supply chain landscape. After all, while
best practices evolve over time, so does hacker ingenuity.

With that in mind, this chapter focuses on Stage 4 (Nirvana)
of the Secure Supply Chain Journey, which can help
organizations future-proof their software supply chain by
proactively identifying and planning for emerging threats,
as well as ensuring cultural buy-in to prevent erosion over
time.

Automated Security

Tooling supports observability
Best practices followed
Lack of governance

Empowerment

Stage 2

Verifiable Safety

Tooling supports observability
Best practices followed
Governance in place

Enlightenment

Stage 3

48

Stage 4
Anti Entropy

74% of IT pros believe technologies like
static and dynamic application security
testing [SAST & DAST] are important, but

feel that those technologies aren’t enough
to protect them from supply chain threats

Reversinglabs

““

49

Stage 4
Anti Entropy

If you’ve reached the fourth stage on the journey to a secure
software supply chain, take a moment to celebrate the
accomplishment. Not only do you now know where all the
skeletons in your supply chain live, but you’ve got the best
practices in place to deal with them, and the governance to
ensure they don’t accidentally come back to haunt you. No
mean feat at a time when the cost of software supply chain
attacks is expected to exceed $45B.

Having reached the pinnacle of your journey all that’s left to
do is make sure you can’t easily be toppled off. That means
getting a handle on existing and emerging threats, as well
as ensuring your controls are resilient enough to withstand
them. But it also means fostering a culture that internalizes
those needs, as well.

Some of the tools and practices that can help with Stage 4
include:

Keep in mind that your software supply chain is only
as strong as its weakest link, which is constantly being
redefined as new vulnerabilities are discovered and hackers
explore new tools, targets and tactics. To keep up, you’ll
need a repeatable process that can help identify threats
and evaluate the effectiveness of existing systems/controls.

•	 Standard Tooling - implement threat modeling tooling
that can help visualize systems, flows and vectors of
attack.

•	 Standard Practices - simulate and analyze the effect of
attacks, both when key controls are present and when
they’re not in order to assess the effectiveness of/need for
redundancy.

•	 Governance - implement a culture of software supply
chain security that truly makes it everyone’s responsibility.

Nirvana
Stage 4
Anti EntroZpy

https://www.juniperresearch.com/press/press-releases/study-reveals-staggering-cost-of-software-supply

50

Stage 4
Anti Entropy

•	 Identify the entities/assets subject to attack.
•	 Enumerate the vectors of attack, as well as their impact.
•	 Implement solutions to reduce the risk.
•	 Assess the effectiveness of the solutions.

The process of threat modeling is well known in the
domains of application and system/network security, but
none of the popular threat modeling frameworks were
built to specifically address software supply chain security.
However, threat modeling general principles can still be
applied:

5050

51

Stage 4
Anti Entropy

•	 Google’s software supply chain threats diagram
highlights potentially vulnerable entry points across a
typical software development lifecycle:

Conduct Open-Source
Supply Chain Attack

Create Name Confusion
with Legitimate Package

Develop and Advertise Distinct
Malicious Package from Scratch

Combosquating

Altering Word Order

Manipulating Word Separators

Typosquatting

Built-In Package

Brandjacking

Omitting Scope or Namespace

Similarity Attack Mask Legitimate
Package

Dangling Reference

Prevent Update to Non-Vulnerable Version

Distribute as
Package Maintainer

Inject into
Hosting System

Take-over Legitimate Account

Compromise Maintainer System

Compromise User
(Project Maintainer/Administrator)

Compromise Hosting System

Change Ethos

Become a
Maintainer

Bribe or Blackmail
Legitimate User

MITM Attack

DNS Cache Poisoning

Tamper Legitimate URL

Abuse Dependency Resolution Mechanism
Subvert Legitimate Package

Inject Sources of
Legitimate Package

Inject During the Build
of Legitimate Package

Distribute Malicious Version
of Legitimate Package

Because the software supply chain is both wide and
deep, it may be easier to identify vulnerable entities by
enumerating known attacks and their targets. There are
two useful approaches here:

•	 SAP’s software supply chain risk explorer provides an interactive
attack tree, starting with abstract, top-level goals and drilling
down to identify known attack methods and techniques. For
example:

https://cloud.google.com/software-supply-chain-security/docs/attack-vectors
https://sap.github.io/risk-explorer-for-software-supply-chains/

52

Stage 4
Anti Entropy

•	 Seed public repositories with “dummy” typosquatted
or brandsquatted malware to test your import pipeline.
Although researchers have taken this approach in the
past, it’s not recommended since administrators of
public repositories already have more than enough work
managing the flood of real malware.

•	 Inject known malware in a controlled manner into your
import pipeline, artifact repository, CI/CD pipeline, etc.
Getting an example of malware can be problematic
since public repositories are quick to remove malicious
packages once identified. Consider leveraging
ActiveState’s repository of Python, Perl, Ruby, etc malware
that we’ve removed from our ActiveState Platform
catalog and archived for researchers.

•	 Take a “Chaos Monkey” approach to help flesh out a
defense-in-depth strategy using redundant instances
and controls. Netflix’s Chaos Monkey randomly terminates
instances in production to help identify single points of
failure.

While these techniques will help ensure your systems and
controls are both strong and resilient, attacks are always
evolving. Threat modeling should be an ongoing, or at least
a periodic practice to ensure your software supply chain
remains secure.

Risk Score = Probability x Impact
where Probability & Impact can be ranges as opposed to
specific values

Once you’ve found the weakest points and plugged them,
you’ll want to evaluate them. There are a number of
approaches you can take, including:

Using these two assets, you should be able to enumerate
the threats, as well as known vectors and targets of attack.
If you’re like most organizations, you’ll end up with quite
an extensive list, which means you’ll need to prioritize your
approach by assigning a risk score to each threat/asset:

5252

https://www.activestate.com/blog/how-to-prevent-dependency-confusion/
https://github.com/ActiveState/MalwareArchivist
https://netflix.github.io/chaosmonkey/

53

Stage 4
Anti Entropy

Cultural Buy-In
Finally, the last step is often the most difficult, and the
most important: getting cultural buy-in. Traditionally,
developers, DevOps and other coders are rarely incentivized
to emphasize security at the expense of deliverability and
features. But without their buy-in, you will always be fighting
an uphill battle.

While some frameworks insist that universal buy-in be
the starting point of any software supply chain security
initiative, we’ve found that it’s always easier to get dev buy-
in once you can show them the systems and processes
you’ve put in place won’t slow them down.

At ActiveState, we’ve spent more than twenty years
ensuring that the easiest way to work with open source
just happens to be the most secure. And now with the
ActiveState Platform, organizations can benefit from:

•	 SLSA Build Level 3-compliant open source runtime
environments automatically built from vetted source
code in a repeatable manner, along with the attestations
to prove it.

•	 A universal package management tool that simplifies
dependency and environment management.

All of which makes it easier for developers to build and use
open source, while making it safer for enterprises to adopt.

5353

54

Stage 4
Anti Entropy

Conclusions
The journey to a secure software supply chain is just that: a
journey, rather than a destination. After all, bad actors will
always come up with novel approaches to find and exploit
the weakest link in your software supply chain. It’s also
important to realize that your supply chain is never set in
stone:

•	 Open source authors change
•	 Packages are constantly updated, become vulnerable,

and get patched
•	 Languages go EOL
•	 Repositories move
•	 Trusted vendors change

Our Journey to a Secure Software Supply Chain is a good
overview, but when it comes to implementation, the devil
is always in the details. ActiveState’s experts can help you
understand what supply chain security can mean for your
organization, as well as provide advice on the best way to
implement it. Feel free to reach out to us at any time on
your journey.

References:
Check out all the resources referred to in the book on one
handy page.

https://www.activestate.com/journey-to-software-supply-chain-security-re-
sources

55

Stage 4
Anti Entropy

ActiveState is the de-facto standard for millions of developers around the world who have been
using our commercially-backed, secure open source language solutions for over 20 years.
Automatically build secure open source language runtime environments (such as Python, Perl,
Ruby and more) from source code for Windows, Linux or Mac—all without requiring language or
operating system expertise.

www.activestate.com
Toll-free in NA: 1-866.631.4581
solutions@activestate.com

©2024 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™, and The Open Source Languages Company™ are all trademarks of ActiveState.

Dana Crane

With 25+ years in the software industry, Dana has had his share of both
crossing and falling into the chasm. He’s currently the Product Marketing
Manager at ActiveState Software. You can find more of his work at
danacrane.medium.com and danacrane.substack.com

Scott Robertson

Passionate about creating products that solve real problems, Scott
drives ActiveState’s technology vision based on his experience of over 20
years knees deep in code. Over that time, he’s authored a book, founded
3 startups and sold one of them. As ActiveState’s CTO, he understands
the pains faced in pushing software into production and the challenges
big business has to stay fast and relevant. He helps companies do both.

About the Authors

About ActiveState

