
 1

SOFTWARE SUPPLY CHAIN
SECURITY BUYERS GUIDE

 2

Executive Summary

The software supply chain isn’t a new concept, but in a post-Solarwinds world, it’s become
the focal point of efforts to improve cybersecurity in general, and the security of software
development in particular. The market result has been a gold rush as traditional software security
vendors have quickly positioned themselves as supply chain security vendors. Making head or tail
of their claims can be confusing.

The process of importing prebuilt, third-party code into your organization is arguably the weakest
link in the software supply chain since it involves trusting thousands of open source developers
with whom you have no relationship. But building all open source dependencies from source code
(including all transitive dependencies and linked C libraries) is both complex and costly in terms
of time and resources.

A number of traditional and emerging tools discussed in this guide can help mitigate many of the
threats inherent in your software supply chain, while reducing cost and complexity.

Software supply chain risks increase with:

• The number of open source languages/ ecosystems in your development stack

• The number of dependencies you build in a non-reproducible manner

• The fewer codebase updates you perform

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/

 3

Introduction

Organizations concerned with the security of their software supply chain often have trouble
navigating the ever-expanding labyrinth of open source and commercial software solutions that
claim to help. While solutions exist across the entire software supply chain, it can be difficult to
determine which vendors are merely “supply-chain-washing” their traditional security tools, and
which vendors have created purpose-built tools to solve key software supply chain issues. This
guide is designed to provide clarity.

Hackers are increasingly targeting software development systems, open source components
and software build pipelines in order to gain economies of scale when it comes to cyberattacks.
A single compromised software artifact in a popular application can seed hundreds or even
thousands of downstream customers with a potential point of attack. It’s one of the key reasons
that software supply chains are increasingly under assault, with 2023 featuring twice as many
attacks as the past 3 years combined, despite the fact that 2019-2022 saw a742% increase in
software supply chain attacks, year on year.

1. Sonatype 9th Annual State of the Software Supply Chain
2. Gartner report: How Software Engineering Leaders Can Mitigate Software Supply Chain Security Risks

As a result, Gartner is predicting that “By 2025, 45% of organizations
worldwide will have experienced attacks on their software supply chains,
a three-fold increase from 20212”. Online marketplace vendor Capterra
confirms the trajectory, citing the fact that “three-fifths (61%) of US
businesses have been directly impacted by a software supply chain threat”
in 2022, and as a result, more than 50% of organizations have lost trust in
legacy vendors due to supply chain attacks

The software supply chain extends from:

• Imported Code - any open source packages, code snippets, tools, or other third-party software brought into
the organization in order to streamline the software development process.

• Build Process – the process of compiling, building and/or packaging code, usually via an automated system
that also executes tests on built artifacts.

• Use/Deployment – the process of working with, testing and running built artifacts in dev, test and
production.

https://www.helpnetsecurity.com/2023/10/05/root-cause-open-source-risk/
https://www.helpnetsecurity.com/2023/10/05/root-cause-open-source-risk/
https://www.infosecurity-magazine.com/news/software-supply-chain-attacks-hit/
https://healthitsecurity.com/news/trust-in-legacy-it-vendors-drops-as-supply-chain-security-issues-increase

 4

With IBM reporting that the average cost of a supply chain attack has hit
$4.45M, requiring an average of 26 days to identify and contain, it’s no
wonder that software supply chain security tools budgets have become an
increasingly large part of the budget for security-conscious organizations.

74% of IT pros believe technologies like
static and dynamic application security
testing [SAST & DAST] are important,
but feel that those technologies aren’t
enough to protect them from supply

chain threats

 – ReversingLabs

“ “

 5

Securing the Weakest Link in the Supply Chain
The import process is often seen as the weakest link in the software supply chain since it
requires trusting hundreds or even thousands of open source authors with whom the organization
has no relationship. After all, the open nature of open source ecosystems allows anyone to
publish anything without a rigorous process to eliminate threats prior to publication.

And because there are no industry-wide standards in place today, each language and repository
often requires its own solution. As a result, every time you add a new open source ecosystem to
your development stack, you may require a different sets of tools to deal with:

• Vulnerabilities - while Software Composition Analysis (SCA) tools have some shortcomings, they remain
the best way to decrease Mean Time To Awareness (MTTA) for open source security vulnerabilities.

• Malware - while code scanners can have difficulties with binary packages, they provide one of the best ways
to identify typical malware threats.

As the depth of the software supply chain increases, new best practices and tools must be
implemented to counter emerging threat vectors. For example:

3. Veracode’s State of Software Security v11: Open Source Edition

While numerous open source and commercial solutions exist to help deal with the breadth, depth
and rate of change of your software supply chain, keep in mind that:

• Ecosystem-specific tools tend to be more robust, but will significantly increase costs to implement and
maintain if you work with more than one open source language.

• Commercial solutions tend to be more comprehensive and expensive, but may be more cost-effective in the
long run than trying to integrate and maintain multiple, best-in-class open source solutions.

• Quarantining - artifact repositories like Sonatype Nexus (and their Lifecycle offering), JFrog Artifactory, or
similar solution can be used to quarantine suspicious prebuilt artifacts for investigation.

The rate of change in the software supply chain presents multiple threats, particularly since most
organizations are reluctant3 to update their codebase for a number of reasons, including:

• Drag on Development - automated dependency management tools can help you decrease the time and
resources required to remediate vulnerabilities, update outdated components, and even automatically build/
rebuild dependencies from source code.

• Breaking Changes - upgrading even a single dependency can end up breaking the build. Dependency
vendoring is one way to avoid dependency conflicts, ensure build consistency and even automate updates/
upgrades of your runtime environment.

• Verifying Provenance - aka, verifying the origin of imported code. Software Attestations can be used here
to ensure third-party code has followed best practices when it was developed and built for distribution.
TestifySec Witness provides a framework for automating, normalizing and verifying software attestations.

https://www.activestate.com/blog/software-composition-analysis-sca-tools-compared/
https://www.activestate.com/blog/top-10-malicious-package-detectors/
https://www.activestate.com/resources/white-papers/scalable-dependency-vendoring/
https://www.activestate.com/blog/outsourced-dependency-vendoring/
https://www.activestate.com/blog/outsourced-dependency-vendoring/
https://www.activestate.com/blog/everything-developers-need-to-know-about-attestations/
https://github.com/testifysec/witness/

 6

Securing The Build Process

Software build systems take the form of a Continuous Integration / Continuous Delivery (CI/CD)
system that can automate the build, test and delivery of software artifacts. While CI/CD has been
widely adopted by software vendors, there are a number of security issues the industry continues
to wrestle with, including:

• Transparency – understanding the original source for all artifacts entering the CI/CD pipeline can improve
both security and integrity of built artifacts.

• Contamination – longer lived processes and/or containers can become polluted, especially if they’re not
sealed off from the internet.

• Reproducibility – consistent output is key to ensuring artifacts are built securely from the same set of inputs
– every time.

Supply chain Levels for Software Artifacts (SLSA) is an emerging software security framework
that can help resolve the transparency and contamination issues, and can put you on the road to
achieving reproducibility.

SLSA Build Level 1: Provenance – any code, library or open source package imported into the
organization must have a type of software attestation known as a “provenance attestation”
that shows where the code was sourced from and how the package was built.

A downstream system should be implemented to automatically verify packages were built
as expected. The aforementioned TestifySec Witness provides a framework for automating,
normalizing and verifying software attestations.

Build Level 2: Build Service + Signing – introduces a build service that includes signing of
the provenance attestation. An isolated signing service ensures against bad actors accessing
secrets used to sign the provenance, as well as providing downstream systems/users with
signed artifacts to indicate they were not tampered with after being built.

A downstream service should be implemented to verify the authenticity of the signature. For
example, SigStore offers software signing using Cosign to generate the key pairs needed to sign
and verify artifacts, along with a transparent ledger so anyone can find and verify signatures.

https://slsa.dev
https://github.com/testifysec/witness/
https://github.com/sigstore

 7

In general, CI/CD systems support either a declarative programming model
(supports SLSA Build Level 3), or an imperative programming model based on
scripts (supports SLSA Build Level 2). Look for an open source or commercial
CI/CD solution that allows you to implement a declarative pipeline that breaks
down each stage of the pipeline into multiple discrete steps.

Securing The Deployment Process

Providing a centralized set of dependencies approved for use ensures:

• Developers always know which dependencies/ versions to use.

• Compliance, security and development managers can vet dependencies for licensing, vulnerabilities and
usability/ maintainability.

Most importantly, it institutes a process that discourages developers from downloading
unapproved dependencies directly. Artifact repositories provide the best way to manage binary
artifacts used in and generated by the software development process.

• Build Steps – each build step should have a single responsibility. When fulfilled, the output should be
checked and, if required, passed to the next step.

• Infrastructure – all build steps should have dedicated resources that are discarded at step completion,
preventing contamination of subsequent steps.

• Environments – care must be taken to ensure the runtime environment is minimized, and the container only
includes components that are absolutely required.

• Provenance – each build step must be dependency complete, and each dependency traceable to the
originating source.

• Service/Network – run on a segmented network with no internet or manual access in order to limit local
exploits and remote tampering/intrusion. This means employing:

 » Pre-Scripted Parameterless Builds – build scripts cannot be accessed and modified within the build
service, preventing exploits.

 » Ephemeral, Isolated Build Steps – every step in a build process must execute in its own container, which
is discarded at the completion of each step.

 » Hermetically Sealed Environments – containers have no internet access, preventing (for example)
dynamic packages from including remote resources.

Bonus:

• Reproducibility – if the same “bits” input don’t always result in the same “bits” output, there’s no guarantee
the artifacts you’re working with haven’t changed from build to build.

Build Level 3: Hardened Builds – specifies a number of controls that harden the organization’s
build service, including:

https://www.activestate.com/blog/the-role-of-repositories-in-software-supply-chain-security/

 8

Conclusions

It seems like every vendor is now a software supply chain security vendor, causing confusion in the
marketplace. But avoiding this market confusion is not an option since it only makes businesses
increasingly susceptible to the threat of ransomware, malware, and other security risks. Organizations
need tangible solutions that can help them address supply chain security threats during their code
import, build and deployment processes.

Following Biden’s Executive Order4 on improving cybersecurity, many are still trying to figure out
what that looks like for their own organization. As software supply chain attacks hit unprecedented
levels, it may be time to start rethinking whether downloading prebuilt open source software makes
sense anymore.

Organizations that don’t vendor their dependencies and build them from source code can only play
catch up with supply chain security via traditional AppSec tools – tools that are often working against
an incomplete set of dependencies since their dependency graph wasn’t generated at build time.

But not only do you need to vendor all your dependencies in order to build everything from source
code, you also need to set up and maintain a secure, hardened build system. The time and resources
required for such a task are beyond the means of all but the largest of software vendors.

This is why we built the ActiveState Platform: to vendor your project’s dependencies on your behalf,
and automatically build them securely from source code for you.

The ActiveState Platform is a SLSA Build Level 3-compliant, hardened build service that builds all of
your open source dependencies (including linked C and Fortran libraries) from source code, and then
packages them into a secure runtime environment.

ActiveState goes a step further by ensuring all builds are reproducible, as well as generating an SBOM
and signed software attestations (both Provenance and Verification Summary Attestations).

By integrating your existing software development process with the ActiveState Platform you can
gain SLSA compliance in a matter of days (not months), freeing up your developers to work on what
matters most: creating new features and functionality.

4. Executive Order on Improving the Nation’s Cybersecurity, MAY 12, 2021

 9

©2024 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®,
ActivePython®, Komodo®, ActiveGo™, ActiveRuby™, ActiveNode™, ActiveLua™, and The Open
Source Languages Company™ are all trademarks of ActiveState.

www.activestate.com
Toll-free in NA: 1-866.631.4581
solutions@activestate.com

Secure open source integration

